
Smart Health 36 (2025) 100577

A
2
(

Contents lists available at ScienceDirect

Smart Health

journal homepage: www.elsevier.com/locate/smhl

Dynamic fog computing for enhanced LLM execution in medical
applications
Philipp Zagar a,b ,∗, Vishnu Ravi a , Lauren Aalami a , Stephan Krusche b ,
Oliver Aalami a , Paul Schmiedmayer a
a Stanford Mussallem Center for Biodesign, 318 Campus Drive, Stanford, 94305, CA, United States
b Technical University of Munich, Boltzmannstraße 3, Garching bei München, 85748, Bavaria, Germany

A R T I C L E I N F O

Dataset link: https://github.com/StanfordSpezi
, https://github.com/StanfordBDHG
Keywords:
Open-source software
Large language models
Fog computing
Decentralized infrastructure
Mobile app development
iOS

 A B S T R A C T

The ability of large language models (LLMs) to process, interpret, and comprehend vast amounts
of heterogeneous data presents a significant opportunity to enhance data-driven care delivery.
However, the sensitive nature of protected health information (PHI) raises concerns about data
privacy and trust in remote LLM platforms. Additionally, the cost of cloud-based artificial
intelligence (AI) services remains a barrier to widespread adoption. To address these challenges,
we propose shifting the LLM execution environment from centralized, opaque cloud providers
to a decentralized and dynamic fog computing architecture. By running open-weight LLMs in
more trusted environments, such as a user’s edge device or a fog layer within a local network,
we aim to mitigate the privacy, trust, and financial concerns associated with cloud-based LLMs.
We introduce SpeziLLM, an open-source framework designed to streamline LLM execution across
multiple layers, facilitating seamless integration into digital health applications. To demonstrate
its versatility, we showcase SpeziLLM across six digital health applications, highlighting its broad
applicability in various healthcare settings.

1. Introduction

The convergence of digital technology and healthcare has revolutionized medical monitoring and intervention, generating vast
amounts of data through electronic health records (EHRs), wearable devices, and digital health applications. When used responsibly,
this data can significantly enhance healthcare delivery, patient engagement, and clinical outcomes (Tapuria et al., 2021). Yet,
efficiently interpreting and utilizing this heterogeneous data remains a challenge.

LLMs can bridge the gap between complex raw data and meaningful, human-readable insights by answering questions, summa-
rizing, and interpreting structured or unstructured textual data, sometimes outperforming human experts (Thirunavukarasu et al.,
2023). Applications such as the open-source LLMonFHIR system demonstrate how LLMs can directly interact with Fast Healthcare
Interoperability Resources (FHIR)-formatted health data, enabling users to effectively query their information (Schmiedmayer
et al., 2024). However, deploying LLMs in healthcare presents challenges related to data privacy, trust, transparency, regulatory
compliance, and the high costs associated with centralized cloud computing environments (Weidinger et al., 2021; Yuan, Tang,
Jiang, & Hu, 2023).

To address these limitations, we propose shifting LLM execution from centralized cloud environments to a decentralized, dynamic
fog computing architecture (Bonomi, Milito, Zhu, & Addepalli, 2012). Fog computing, an extension of edge computing (Cao,

∗ Corresponding author.
E-mail addresses: zagar@stanford.edu (P. Zagar), vishnur@stanford.edu (V. Ravi), laalami@stanford.edu (L. Aalami), krusche@tum.de (S. Krusche),

aalami@stanford.edu (O. Aalami), schmiedmayer@stanford.edu (P. Schmiedmayer).

https://doi.org/10.1016/j.smhl.2025.100577
Received 19 March 2025; Accepted 24 March 2025
vailable online 2 April 2025
352-6483/© 2025 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
 http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/smhl
https://www.elsevier.com/locate/smhl
https://orcid.org/0009-0001-5934-2078
https://orcid.org/0000-0003-0359-1275
https://orcid.org/0009-0007-7132-5362
https://orcid.org/0000-0002-4552-644X
https://orcid.org/0000-0002-7799-2429
https://orcid.org/0000-0002-8607-9148
https://github.com/StanfordSpezi
https://github.com/StanfordSpezi
https://github.com/StanfordSpezi
https://github.com/StanfordSpezi
https://github.com/StanfordSpezi
https://github.com/StanfordSpezi
https://github.com/StanfordSpezi
https://github.com/StanfordSpezi
https://github.com/StanfordSpezi
https://github.com/StanfordSpezi
https://github.com/StanfordSpezi
https://github.com/StanfordSpezi
https://github.com/StanfordSpezi
https://github.com/StanfordSpezi
https://github.com/StanfordSpezi
https://github.com/StanfordSpezi
https://github.com/StanfordSpezi
https://github.com/StanfordSpezi
https://github.com/StanfordSpezi
https://github.com/StanfordSpezi
https://github.com/StanfordSpezi
https://github.com/StanfordSpezi
https://github.com/StanfordSpezi
https://github.com/StanfordSpezi
https://github.com/StanfordSpezi
https://github.com/StanfordSpezi
https://github.com/StanfordSpezi
https://github.com/StanfordSpezi
https://github.com/StanfordSpezi
https://github.com/StanfordSpezi
https://github.com/StanfordSpezi
https://github.com/StanfordSpezi
https://github.com/StanfordBDHG
https://github.com/StanfordBDHG
https://github.com/StanfordBDHG
https://github.com/StanfordBDHG
https://github.com/StanfordBDHG
https://github.com/StanfordBDHG
https://github.com/StanfordBDHG
https://github.com/StanfordBDHG
https://github.com/StanfordBDHG
https://github.com/StanfordBDHG
https://github.com/StanfordBDHG
https://github.com/StanfordBDHG
https://github.com/StanfordBDHG
https://github.com/StanfordBDHG
https://github.com/StanfordBDHG
https://github.com/StanfordBDHG
https://github.com/StanfordBDHG
https://github.com/StanfordBDHG
https://github.com/StanfordBDHG
https://github.com/StanfordBDHG
https://github.com/StanfordBDHG
https://github.com/StanfordBDHG
https://github.com/StanfordBDHG
https://github.com/StanfordBDHG
https://github.com/StanfordBDHG
https://github.com/StanfordBDHG
https://github.com/StanfordBDHG
https://github.com/StanfordBDHG
https://github.com/StanfordBDHG
https://github.com/StanfordBDHG
https://github.com/StanfordBDHG
mailto:zagar@stanford.edu
mailto:vishnur@stanford.edu
mailto:laalami@stanford.edu
mailto:krusche@tum.de
mailto:aalami@stanford.edu
mailto:schmiedmayer@stanford.edu
https://doi.org/10.1016/j.smhl.2025.100577
https://doi.org/10.1016/j.smhl.2025.100577
http://creativecommons.org/licenses/by/4.0/

P. Zagar et al. Smart Health 36 (2025) 100577
Fig. 1. Transition of LLM inference from cloud-based platforms to user-proximate environments.

Liu, Meng, & Sun, 2020), strategically positions substantial computing resources closer to data sources through intermediary fog
nodes (Bonomi et al., 2012). This approach reduces latency, optimizes bandwidth, and enhances privacy and trust by leveraging
computational power in localized, trusted environments. Fog architectures typically consist of three layers (Iorga, Feldman, Barton,
Martin, Goren, & Mahmoudi, 2018):
• Edge Layer: Internet of Things (IoT) and end-user devices at the network edge, where data is generated and utilized.
• Fog Layer: Positioned between the cloud and the edge, fog nodes with substantial computational power process data closer to
the source, offering a more trusted compute environment.

• Cloud Layer: Centralized units with vast computational resources, but raising concerns regarding privacy, trust, and cost.
However, fog computing introduces significant complexities, especially for resource-intensive LLMs. Managing limited resources,

dynamic availability, and network constraints across decentralized nodes makes it challenging to achieve a viable fog architecture
while balance latency, cost, and privacy—key factors in digital health applications relying on LLM interactions.

Research Question

What software mechanisms are necessary to enable a dynamic fog computing architecture to distribute LLM inference tasks
across decentralized edge, fog, and cloud environments with the goal to enhancing privacy, trust, and cost efficiency in
digital health applications?

We introduce SpeziLLM as an open-source, LLM-agnostic framework designed to investigate these software mechanisms across
different LLM inference environments. SpeziLLM aims to transparently integrate various LLMs across diverse execution environ-
ments, while abstracting technical complexities of fog orchestration. We demonstrate SpeziLLM ’s versatility through six digital
health applications across different execution modalities. We discuss the insights, challenges, and opportunities of a transparent
LLM execution across different processing layers and their applicability in different digital health applications.

2. Architecture: Fog computing for LLMs

We propose a software architecture that dynamically shifts LLM inference closer to user devices based on trust, availability, and
computational resources (Fig. 1). Edge computing enhances trust, security, and privacy by processing data locally (Cao et al., 2020),
but adapting compute-intensive LLMs remains challenging due to the limited computational power of edge devices. Efforts to address
these constraints focus on model compression techniques such as quantization (Frantar, Ashkboos, Hoefler, & Alistarh, 2023; Gunter
et al., 2024). Fog computing extends cloud capabilities to the network’s edge, reducing latency and optimizing resources through
dynamic task dispatch and agile resource allocation (Bonomi et al., 2012; Iorga et al., 2018). At the core of this approach are fog
nodes—heterogeneous devices near the edge that enhance processing efficiency, provide a uniform interface for interacting with
computational infrastructure, regardless of execution locality. By processing data closer to the source, they help mitigate security
and privacy concerns, offering a more controlled environment for handling sensitive medical data in compliance with HIPAA/GDPR
regulations before engaging cloud-based LLMs.

We introduce a simplified mental model to standardize LLM interactions within a fog computing framework, comprising four core
components (Fig. 2). A Schema defines model configurations (e.g., model type, parameters) and remains immutable once initialized.
Schemas are passed to a centralized Runner, which delegates inference tasks to local, fog, or remote Platforms. Each platform
manages its LLM execution environment, translating schemas into active Sessions that execute inference tasks while maintaining
in-flight context and state.
2

P. Zagar et al. Smart Health 36 (2025) 100577
Fig. 2. Mental model of LLM interactions as a UML class diagram.

2.1. Context-aware generation

Limited context windows present challenges when integrating LLMs with extensive data, particularly on resource-constrained
devices. Injecting large datasets is not only cost-prohibitive due to per-token inference pricing but also constrained by strict context
length limitations. We address this using an industry-standard tool calling mechanism, a specific instantiation of Retrieval-Augmented
Generation (RAG), enabling structured external data interaction while remaining transparent to the LLM execution layer.

We implement context injection through a declarative, LLM-agnostic domain-specific language (DSL) that abstracts technical
complexities and state management across all execution modalities (Fig. 3). Requests trigger inference on the LLM Service, which
may return tool invocations (functions and parameters). The Runner executes these tools concurrently and seamlessly reintegrates
the results into the context.

Fig. 3. UML sequence diagram illustrating LLM tool calling within our architecture.

2.2. Dynamic task dispatching

While fog computing provides decentralized computing resources near user devices, these resources may not always be available,
requiring a transparent and dynamic task dispatch mechanism across the distributed architecture. Our software architecture is
designed to allocate inference tasks to optimal fog nodes based on proximity and capability.
3

P. Zagar et al. Smart Health 36 (2025) 100577
Fig. 4. UML sequence diagram depicting LLM inference execution within the fog computing layer.

Fig. 4 illustrates inference task allocation. Upon receiving a user message, the Runner discovers available Fog LLM Services in
the local network. The selected FogSession securely dispatches the inference task with authorization credentials. If approved by
the Fog Auth Service, the fog node executes the model inference and streams the results directly back to the user’s edge device.

3. Reference implementation: SpeziLLM

Based on the fog computing LLM architecture described in Section 2, we developed the SpeziLLM1 reference implementation—
an open-source, MIT-licensed Swift framework that simplifies modular and flexible LLM integration into digital health applications.
SpeziLLM supports Apple’s major operating systems (iOS, macOS, visionOS), leveraging Apple’s software ecosystem and optimizing
performance on Apple Silicon. It is embedded within the Stanford Spezi2 ecosystem of modules, enabling easy integration into digital
health applications and seamless access to health data in Spezi-based applications.

SpeziLLM provides modular and composable LLM components, including schemas, session state management, and streamlined
error handling, along with prebuilt, customizable UI elements that accelerate development, while aligning with the mental model
in Section 2. The reference implementation ensures uniformity and consistency across different LLM execution layers.

3.1. Cloud layer

SpeziLLM integrates with cloud-based LLM services using the widely adopted OpenAI-compatible application programming
interface (API), ensuring compatibility with major providers such as OpenAI, Anthropic and Gemini. By leveraging OpenAPI
schema-based code generation, SpeziLLM remains future-proof and provides mechanisms to easily replicate similar setups for
other cloud-based API integrations. The framework abstracts tool-calling integration through a declarative DSL, simplifying
structured interactions with external data sources. Comprehensive examples and documentation are available in the open-source
documentation3.

1 https://github.com/StanfordSpezi/SpeziLLM/
2 https://github.com/StanfordSpezi
3 https://swiftpackageindex.com/stanfordspezi/spezillm/documentation/spezillmopenai/functioncalling
4

https://github.com/StanfordSpezi/SpeziLLM/
https://github.com/StanfordSpezi
https://swiftpackageindex.com/stanfordspezi/spezillm/documentation/spezillmopenai/functioncalling

P. Zagar et al. Smart Health 36 (2025) 100577
Table 1
A list of six health applications built between 2023 and 2024 using SpeziLLM.
 Application Description Developers Models Status
 1. LLMonFHIR Explains and provides helpful

context for FHIR-formatted
patient data using LLMs. Aims to
enhance patient health literacy.

Stanford Biodesign Digital
Health

Cloud, Fog, Edge (Llama
3.1 8B)

Study enrollment started

 2. OwnYourData Increases diversity in cancer
clinical trials through LLM- and
FHIR EHR-based patient/study
matching.

Stanford Biodesign Digital
Health and OwnYourData
LLC & Startup LLC

Cloud (OpenAI GPT-4o) In development

 3. HealthGPT Enables users to query and
interact with their Apple Health
data using natural language.

Stanford Biodesign Digital
Health

Cloud, Fog, Edge (Llama
3.1 8B)

minimum viable product (MVP)
built

 4. Nourish Meal tracking app designed to
support outpatients with
Avoidant/Restrictive Food Intake
Disorder (ARFID).

Stanford Biodesign Digital
Health & Lucile Packard
Children’s Hospital
Stanford

Cloud (OpenAI GPT-4o) MVP built; study planned

 5. Stronger Tracks protein intake and
resistance exercise training in
postmenopausal research
participants.

Stanford Biodesign Digital
Health & Stanford
Medicine

Cloud (OpenAI GPT-4o) MVP built; study planned

 6. Intake Pre-populates medical intake
forms based on FHIR records via
interactive LLMs.

Stanford Biodesign Digital
Health

Cloud (OpenAI GPT-4o) MVP built

3.2. Fog layer

SpeziLLM’s fog computing integration utilizes dynamically discoverable network-local LLM inference services, aligning with the
OpenAI API for seamless interchangeability. Fog nodes are containerized using Docker for rapid deployment and leverage the open-
source inference tool Ollama4. SpeziLLM employs standardized service discovery protocols like Multicast Domain Name Service
(mDNS) and Apple’s Bonjour, ensuring broad compatibility across Linux and Apple ecosystems. Inference requests are securely
authorized and dispatched using SSL and JWT-based authentication, preserving privacy and trust within the execution environment.

3.3. Edge layer

SpeziLLM’s edge execution is powered by MLX 5, an open-source inference library optimized for Apple’s hardware ecosystem.
Local inference is managed by SpeziLLM, which serializes inference tasks and automates efficient resource handling, including
downloading and persistent storage of LLM model files. SpeziLLM’s MLX inference infrastructure natively supports popular open-
weight model families such as Llama, Gemma, Phi, and DeepSeek. The MLX integration allows SpeziLLM to seamlessly incorporate
additional open-weight models, enabling developers to download, store, and manage local LLM models within Spezi-based
applications.

A comprehensive technical analysis and performance evaluation of SpeziLLM is provided by Nissen et al. (2025) demonstrating
the variety of supported models and their computational efficiency as well as performance in answering medical-related questions.

4. Methods

We conducted six case studies to demonstrate SpeziLLM’s applicability across diverse mobile health platforms (Table 1). For both
the edge and fog layers of SpeziLLM, we employed the Llama 3.1 Instruct model (8B variant6) in its 4-bit quantized version (Frantar
et al., 2023), a common quantization approach for mobile LLM deployments to optimize inference speed. Edge inference was
executed locally on an iPhone 16 Pro (A18 Pro System on a Chip (SoC), 8 GB RAM), while fog inference was carried out on a
fog node hosted on a MacBook Pro 16’’ (M4 Pro, 48 GB RAM) running within a Docker container. For cloud inference, we utilized
OpenAI’s GPT-4o (gpt-4o-2024-08-06).

As the LLM landscape evolves rapidly, our methods do not aim to provide an exhaustive performance benchmark or evaluation of
model output quality as demonstrated by Nissen et al. (2025). Instead, our focus is on the case studies conducted with SpeziLLM and
the architectural decisions underlying its deployment across local, fog, and cloud environments. By analyzing these case studies, we
offer comparative insights into inference speed, providing a practical reference for expected performance across different execution
layers based on model size.

We integrated SpeziLLM into all six case studies (Table 1), each using the cloud execution layer. Two applications also leveraged
fog and edge layers with minimal code modifications, enabled by SpeziLLM’s uniform interface.

4 https://github.com/ollama/ollama
5 https://github.com/ml-explore/mlx
6 https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
5

https://github.com/ollama/ollama
https://github.com/ml-explore/mlx
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct

P. Zagar et al. Smart Health 36 (2025) 100577
Fig. 5. Screenshots from LLMonFHIR iOS Application.

5. Results

The applications summarized in Table 1 demonstrate SpeziLLM’s adaptability across various digital health scenarios.
LLMonFHIR (Fig. 5) (Schmiedmayer et al., 2024) dynamically selects the optimal LLM inference environment by combining

multiple LLM layers. Simple tasks such as summarization, transformation, or interpretation of individual FHIR resources (Fig. 5(b))
are handled by local or fog-based models with higher trust levels (Section 2), minimizing exposure of patient identifiers to remote
cloud providers. These outputs support more complex tasks, such as the interactive chat view (Fig. 5(c)), where a cloud-based OpenAI
LLM interprets locally generated summaries within user dialogues without accessing raw FHIR resources. LLMonFHIR particularly
benefited from SpeziLLM’s prebuilt UI elements and declarative DSL for OpenAI’s tool calling (Fig. 3), reducing development
complexity and enhancing parallel processing efficiency.

SpeziLLM’s uniform interface and cross-layer dynamic dispatch are integral to the rearchitected HealthGPT 7 (3) application (Fig.
6), which utilizes multiple LLM execution environments. This open-source Stanford Spezi-based tool enables users to query Apple
Health data via natural language, retrieving metrics such as sleep, step count, exercise minutes, body mass, and heart rate through
a bidirectional speech-to-text chat interface (Fig. 6(c)). In addition to OpenAI cloud LLM inference (Fig. 6(a)), HealthGPT supports
local and fog-layer models (Fig. 6(b)), ensuring sensitive health data and user interactions remain in trusted environments.

In general, local and fog models produced comprehensible outputs, though they were typically more verbose and less detailed
than GPT-4o. Fig. 7 shows that local inference experienced delays due to hardware constraints, such as limited main memory in
mobile devices. To improve response time, we leveraged an observed inverse correlation between context size and inference speed,
reducing the local LLM health data context from 14 days to five.

SpeziLLM also facilitated application development for the digital health projects Nourish (4), Stronger8 (5), and Intake9 (6), all
built during the 10-week CS342 Building for Digital Health10 course at Stanford University. Students integrated SpeziLLM into their
apps, enabling chat interfaces and tool-calling mechanisms for domain logic interactions. Through iterative student feedback, we
validated the framework’s abstraction level, API/DSL design, and functionality. Notably, Intake leverages LLMs to automate medical
form pre-population using patient FHIR records, effectively transforming raw EHR data into structured insights—a key capability
that makes LLMs particularly well-suited for digital health applications (Section 1).

7 https://github.com/StanfordBDHG/HealthGPT
8 https://github.com/CS342/2024-Stronger
9 https://github.com/CS342/2024-Intake
10 https://cs342.stanford.edu
6

https://github.com/StanfordBDHG/HealthGPT
https://github.com/CS342/2024-Stronger
https://github.com/CS342/2024-Intake
https://cs342.stanford.edu

P. Zagar et al. Smart Health 36 (2025) 100577
Fig. 6. Screenshots of the HealthGPT iOS application.

Fig. 7. Comparison of inference speed and time to first token for different LLMs in HealthGPT. Each measurement represents the mean of five quantifications,
with standard deviation in brackets. Measurements were taken in response to the question, ‘‘How much did I sleep last week, and how can I improve my sleep?’’.

6. Discussion

Our results demonstrate the feasibility of using fog nodes in Docker containers for easy deployment, though they faced
performance constraints due to limited hardware-backed LLM inference acceleration. Interestingly, Fig. 7 shows that despite these
constraints, the fog layer achieved a low time-to-first-token latency, outperforming cloud-based inference and local edge execution.
7

P. Zagar et al. Smart Health 36 (2025) 100577
Even with Docker-imposed limitations, the fog layer exceeded natural conversational speed (200–300 words per minute or five to
seven tokens per second) while running on consumer hardware. Still, we acknowledge that the high cost of modern, optimized
hardware remains a barrier to widespread adoption.

Our case studies, including HealthGPT and LLMonFHIR, show that edge-based LLMs handled simple tasks effectively but struggled
with deeper contextual reasoning, often producing verbose and less precise outputs than cloud-based GPT models. Sensitive data
can be preprocessed in more trusted local or fog layers before potentially interacting with more powerful but less trusted cloud
resources. Techniques such as few-shot prompting may help mitigate these limitations by better leveraging small model strengths.

Advancements in mobile inference frameworks like Android’s AICore and Apple’s MLX promise improved local execution
and memory efficiency (Gunter et al., 2024; Nissen et al., 2025). SpeziLLM’s adaptable architecture and unified interface are
well-positioned to integrate these developments, enabling secure and efficient LLM adoption in digital health.

7. Conclusion

Our fog-computing-based architecture (Section 2) and SpeziLLM reference implementation (Section 3) mitigate concerns related
to privacy, trust, and cost when using LLMs in medical applications. These challenges stem from sensitive data transmission to
opaque cloud services and resource-intensive computation. We leverage fog computing by dynamically assigning LLM inference
tasks to edge, fog, or cloud layers based on task complexity and data sensitivity, all managed through a uniform interface.

SpeziLLM’s multi-layered approach enables efficient mobile inference, decentralized fog node discovery and dynamic dispatch,
and seamless cloud integration via an OpenAI-compatible API and declarative DSL. Evaluations across six digital health applications
validated its versatility and ease of integration.

The key contribution of SpeziLLM is its unified, LLM-agnostic interface, which transparently allocates inference tasks across
edge, fog, and cloud environments based on complexity and data sensitivity. Lightweight, specialized models can handle simple
tasks locally, generating privacy-filtered outputs for fog or cloud-based processing of more complex tasks. Ongoing advancements
in local inference efficiency, particularly in memory-constrained environments, will further enhance SpeziLLM’s performance and
applicability.

CRediT authorship contribution statement

Philipp Zagar: Conceptualization, Methodology, Software, Validation, Writing – original draft, Writing – review & editing.
Vishnu Ravi: Software, Validation, Writing – review & editing. Lauren Aalami: Validation, Writing – original draft, Writing –
review & editing. Stephan Krusche: Writing – review & editing. Oliver Aalami: Conceptualization, Supervision, Validation, Writing
– review & editing. Paul Schmiedmayer: Conceptualization, Methodology, Software, Supervision, Validation, Writing – original
draft, Writing – review & editing.

Acknowledgments

We thank the Stanford Mussallem Center for Biodesign for supporting this project and our digital health research.

Funding

This work was supported by the German Academic Exchange Service (DAAD) ‘‘Internationale Forschungsaufenthalte für Infor-
matikerinnen & Informatiker’’ scholarship [grant number 91886835] and the Bavaria California Technology Center (BaCaTec) project
fund [grant number 10 2023-2].

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared
to influence the work reported in this paper. The SpeziLLM framework and the larger Stanford Spezi ecosystem are open-source and
licensed using the MIT license. Stanford Spezi is being used to foster a digital health ecosystem and teach the next generation of
digital health leaders.

Data availability

We have included links to all the open-source software used in this manuscript. Further information and an overview of our
open-source tools are available at https://github.com/StanfordSpezi and https://github.com/StanfordBDHG.
8

https://github.com/StanfordSpezi
https://github.com/StanfordBDHG

P. Zagar et al. Smart Health 36 (2025) 100577
References

Bonomi, F., Milito, R., Zhu, J., & Addepalli, S. (2012). Fog computing and its role in the internet of things. In Proceedings of the first edition of the MCC workshop
on mobile cloud computing (pp. 13–16). New York, NY, USA: Association for Computing Machinery, http://dx.doi.org/10.1145/2342509.2342513.

Cao, K., Liu, Y., Meng, G., & Sun, Q. (2020). An overview on edge computing research. IEEE Access, 8, 85714–85728. http://dx.doi.org/10.1109/ACCESS.2020.
2991734, URL https://ieeexplore.ieee.org/document/9083958.

Frantar, E., Ashkboos, S., Hoefler, T., & Alistarh, D. (2023). GPTQ: Accurate post-training quantization for generative pre-trained transformers. http://dx.doi.org/
10.48550/arXiv.2210.17323, arXiv:2210.17323, URL https://arxiv.org/abs/2210.17323.

Gunter, T., Wang, Z., Wang, C., Pang, R., Narayanan, A., Zhang, A., et al. (2024). Apple intelligence foundation language models. arXiv:2407.21075, URL
https://arxiv.org/abs/2407.21075.

Iorga, M., Feldman, L., Barton, R., Martin, M., Goren, N., & Mahmoudi, C. (2018). Fog computing conceptual model. Gaithersburg, MD: Special Publication (NIST
SP), National Institute of Standards and Technology, http://dx.doi.org/10.6028/NIST.SP.500-325.

Nissen, L., Zagar, P., Ravi, V., Zahedivash, A., Reimer, L. M., Jonas, S., et al. (2025). Medicine on the edge: Comparative performance analysis of on-device
LLMs for clinical reasoning. arXiv:2502.08954, URL https://arxiv.org/abs/2502.08954.

Schmiedmayer, P., Rao, A., Zagar, P., Ravi, V., Zahedivash, A., Fereydooni, A., et al. (2024). LLM on FHIR – demystifying health records. http://dx.doi.org/10.
48550/arXiv.2402.01711.

Tapuria, A., Porat, T., Kalra, D., Dsouza, G., Xiaohui, S., & and, V. C. (2021). Impact of patient access to their electronic health record: systematic review.
Informatics for Health and Social Care, 46(2), 194–206. http://dx.doi.org/10.1080/17538157.2021.1879810, PMID: 33840342, arXiv:https://doi.org/10.1080/
17538157.2021.1879810.

Thirunavukarasu, A. J., Ting, D. S. J., Elangovan, K., Gutierrez, L., Tan, T. F., & Ting, D. S. W. (2023). Large language models in medicine. Nature Medicine,
29(8), 1930–1940. http://dx.doi.org/10.1038/s41591-023-02448-8.

Weidinger, L., Mellor, J., Rauh, M., Griffin, C., Uesato, J., Huang, P.-S., et al. (2021). Ethical and social risks of harm from language models. arXiv:2112.04359,
URL https://arxiv.org/abs/2112.04359.

Yuan, J., Tang, R., Jiang, X., & Hu, X. (2023). Large language models for healthcare data augmentation: An example on patient-trial matching. arXiv:2303.16756,
URL https://arxiv.org/abs/2303.16756.
9

http://dx.doi.org/10.1145/2342509.2342513
http://dx.doi.org/10.1109/ACCESS.2020.2991734
http://dx.doi.org/10.1109/ACCESS.2020.2991734
http://dx.doi.org/10.1109/ACCESS.2020.2991734
https://ieeexplore.ieee.org/document/9083958
http://dx.doi.org/10.48550/arXiv.2210.17323
http://dx.doi.org/10.48550/arXiv.2210.17323
http://dx.doi.org/10.48550/arXiv.2210.17323
http://arxiv.org/abs/2210.17323
https://arxiv.org/abs/2210.17323
http://arxiv.org/abs/2407.21075
https://arxiv.org/abs/2407.21075
http://dx.doi.org/10.6028/NIST.SP.500-325
http://arxiv.org/abs/2502.08954
https://arxiv.org/abs/2502.08954
http://dx.doi.org/10.48550/arXiv.2402.01711
http://dx.doi.org/10.48550/arXiv.2402.01711
http://dx.doi.org/10.48550/arXiv.2402.01711
http://dx.doi.org/10.1080/17538157.2021.1879810
https://doi.org/10.1080/17538157.2021.1879810
https://doi.org/10.1080/17538157.2021.1879810
https://doi.org/10.1080/17538157.2021.1879810
http://dx.doi.org/10.1038/s41591-023-02448-8
http://arxiv.org/abs/2112.04359
https://arxiv.org/abs/2112.04359
http://arxiv.org/abs/2303.16756
https://arxiv.org/abs/2303.16756

	Dynamic fog computing for enhanced LLM execution in medical applications
	Introduction
	Architecture: Fog Computing for LLMs
	Context-Aware Generation
	Dynamic Task Dispatching

	Reference Implementation: SpeziLLM
	Cloud Layer
	Fog Layer
	Edge Layer

	Methods
	Results
	Discussion
	Conclusion
	CRediT authorship contribution statement
	Acknowledgments
	Funding
	Declaration of competing interest
	Data availability
	References

