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ABSTRACT

With the rapid advancement of artificial intelligence (AI)
in various domains, the education sector is set for transfor-
mation. The potential of AI-driven tools in enhancing the
learning experience, especially in programming, is immense.
However, the scientific evaluation of Large Language Models
(LLMs) used in Automated Programming Assessment Sys-
tems (APASs) as an AI-Tutor remains largely unexplored.
Therefore, there is a need to understand how students interact
with such AI-Tutors and to analyze their experiences.

In this paper, we conducted an exploratory case study by
integrating the GPT-3.5-Turbo model as an AI-Tutor within
the APAS Artemis. Through a combination of empirical data
collection and an exploratory survey, we identified different
user types based on their interaction patterns with the AI-
Tutor. Additionally, the findings highlight advantages, such
as timely feedback and scalability. However, challenges like
generic responses and students’ concerns about a learning
progress inhibition when using the AI-Tutor were also evident.
This research adds to the discourse on AI’s role in education.
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1 INTRODUCTION

The recent rise of artificial intelligence (AI) has resulted in
transformative changes across various sectors. In healthcare,
AI has enabled advanced diagnostics and personalized treat-
ments [9]. In finance, algorithmic trading and fraud detection
have been revolutionized [7] and the automotive industry
is on the brink of a new era with the development of au-
tonomous vehicles [34]. We have seen first applications of AI
in the educational sector through Intelligent Tutoring Sys-
tems (ITS) [4]. ITS offer personalized learning experiences,
yet their reliance on limited training data confines their ap-
plicability to specific scenarios [4]. This limitation not only
escalates development costs but also restricts the scope and
depth of feedback, thus hindering their broader adoption in
diverse educational contexts.

Recently, with the introduction of ChatGPT, we have
entered the age of accessible generative AI (GenAI) and
large language models (LLMs). LLMs are trained on vast
amounts of diverse data and can therefore generate nuanced,
comprehensive, and context-aware feedback [21]. Beyond just
unit test feedback, LLMs like OpenAI’s GPT-3.5-Turbo or
GPT-4 have the potential to recognize a broader spectrum of
student mistakes and offer tailored guidance. Such capabilities
can bridge the gap in the shortcomings of traditional ITSs
and expand the horizon for feedback mechanisms within
programming education. While the integration of LLMs into
various tools and sectors is well-documented, its specific
application in programming education, especially, in the form
of an AI-Tutor within APASs, remains mostly unexplored.

To address this gap, we seek to address the following
research questions:

(1) RQ1: What is the nature of student interaction with
Automated Programming Assessment Systems when
facilitated by an AI-Tutor?

(2) RQ2: How do students experience AI driven feedback
in Automated Programming Assessment Systems?

(3) RQ3: What are the lessons learned after implement-
ing and operating an AI-Tutor within an Automated
Programming Assessment System?

As a first step, the primary objective is to explore the effec-
tiveness and implications of integrating an AI-Tutor based on
GenAI, specifically OpenAI’s GPT-3.5-Turbo model, into an
APAS [13]. This approach combines empirical data collection
with an exploratory survey. As part of the empirical inves-
tigation we closely monitored the AI-tutor’s usage, student
interactions, code submissions, and feedback timings. Addi-
tionally, we analyzed code changes between submissions to
understand student engagement patterns with the AI-Tutor.
The preliminary findings suggest that the AI-Tutor offers
unique benefits, but there is still a long way to fully optimize
the student learning experience.

The remainder of this paper is structured as follows: Sec-
tion 2 provides an overview of related work. Section 3 elabo-
rates on the research techniques. Section 4 presents the main
findings of this study, which are further discussed in Section
5. Section 6 outlines potential constraints of this study, and
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we conclude in Section 7, summarizing the main insights and
reflecting on the broader implications of this research.

2 RELATED WORK

ITSs have long been a subject of interest in the realm of
programming education [1]. These systems are generally de-
signed to deliver instructional content in a way that is tai-
lored to individual learners, adapting to a student’s needs
[4]. There have been experiments proving that these systems
show similar effects like human tutoring [18]. As a result,
many ITSs have been created for programming education
[1, 3, 10]. Adaptive or intelligent feedback is a common fea-
ture, but this feedback is mainly generated by extensive unit
testing [4].

Beside unit testing, the application of machine learning to
emulate human feedback is no recent advancement, as the
first chat-bot has been introduced over 50 years ago [2]. Since
then, these chat-bots have become more and more intelligent
[17, 32]. However, they are normally trained on questions the
creators expect users to ask, but this is changing with the
introduction of ChatGPT [5].

Rudolph et al. did one of the first extensive literature
reviews on ChatGPT and focused on its relevance for higher
education, especially on student assessment, student learning
and teaching [26]. They found that with ChatGPT it is
now possible to simulate the assistance provided by a tutor,
such as providing personalised assistance in solving problems.
Furthermore, Ray focused on the applications of ChatGPT
across various domains and found among other things that
it has potential in personalizing learning, by analyzing data
on students’ learning preferences, strengths, and weaknesses
[25]. Kasneci et al. discuss the opportunities and challenges
when using generative AI tools like ChatGPT in education
[12]. They point out the opportunity to provide personalized
feedback to students.

Literature also already documents the effective use of Chat-
GPT in improving source code. For example, Surameery and
Shakor explored the use of ChatGPT to solve programming
bugs [30]. To be precise, they examined how they can leverage
the model to provide debugging assistance, bug prediction
and bug explanation to help solve programming problems.
They conclude that ChatGPT can play an important role in
solving programming bugs, but it is not a perfect solution and
should be seen as an additional debugging tool. Sobania et al.
analyzed the automatic bug fixing performance of ChatGPT
using the bug fixing benchmark set, QuixBugs [28]. They
found that ChatGPT’s bug fixing performance is notably
better than other state of the art approaches being able to
solve 31 out of 40 bugs. Other researchers, like Ouh et al.
and Tian et al., conducted empirical analyses of ChatGPT’s
potential as a programming assistant focusing on code gener-
ation, program repair, and code summarization [22, 31]. Tian
et al. found that ChatGPT can hint surprisingly well to the
original intention behind what a correct version of a program
should look like [31].

Pardos and Bhandari concentrated on comparing the effi-
cacy of hints authored by human tutors and hints generated
by ChatGPT for elementary and intermediate Algebra [23].
They found that 79% of hints produced by ChatGPT passed
a manual quality test. Additionally, Lo conducted research
to decide on how ChatGPT performs in different subject
domains [21] and found that ChatGPT overall performance
regarding programming was outstanding to satisfactory [29].
However, regarding “Software Testing”, it was able to answer
55.6% of the questions partially correctly [11].

Industry has also recognized the value of generative AI,
with EdTech organizations developing AI-based solutions
to help students with their coursework and giving ideas
for lessons to educators [16]. Kshetri found that Quizlet
launched an AI-Tutor Q-Chat, which combines ChatGPT
with Quizlet’s educational content library [16]. Furthermore,
Khan Academy also started using AI to create a chat-bot,
based on the GPT-4 model, with the goal in mind that
students can use it to ask for assistance without the tool
revealing the solution, but helping them solve the exercise
[16].

The related work section shows that existing literature
has explored traditional ITSs and the general capabilities of
ChatGPT in various domains, and industry has already im-
plemented sophisticated tools using generative AI. However,
an exploratory understanding of its practical application as
an AI-Tutor within APASs is still missing. The empirical
studies have primarily focused on the model’s ability to debug,
generate code, and provide hints, and therefore, were able
to state that large language models can be used for specific
tasks, like tutoring. However, none have really implemented
such a system and therefore, the real student experience,
interaction patterns, and perceptions when using ChatGPT
as an AI-Tutor in APASs have not been scientifically investi-
gated. This study seeks to offer a scientific evaluation on the
integration a GPT-based AI-Tutor in APASs, demonstrating
that its tutoring capabilities, as proposed in literature, can
be realized in practice.

3 METHODOLOGICAL APPROACH

This study is guided by a set of research questions (RQ1,
RQ2 and RQ3) that have been defined in Section 1. To
address these research questions, we implemented a three-
stage methodological approach:

(1) Integration of the AI-Tutor within an APAS:
Initial integration into the Artemis platform [15, 19].

(2) Practical application by students: Students solved
a specific programming task on the platform.

(3) Exploratory survey: A survey targeting students
of the “Introduction to Programming” course at the
University of Innsbruck to collect their experiences
with the AI-Tutor.

The following sections explain the details of each of these
stages.
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3.1 Integration of the AI-Tutor within an
APAS

We have implemented the AI-Tutor to collect data. This
included developing a prototype that integrates the APAS
Artemis [14, 15] with the GPT-3.5-Turbo model of OpenAI.
We have chosen Artemis as the APAS for this study because
of several reasons:

(1) Open Source: Artemis is available as an open source
project on GitHub, which makes this research repro-
ducible.1

(2) Functional Scope: Artemis provides all the basic
features necessary for an APAS, including automatic
exercise evaluation via test driven feedback, which
improves the external validity of the findings [27].

(3) Online Editor: Artemis allows students to solve ex-
ercises online via a built-in code editor. This made the
implementation of the AI-Tutor and data collection
easier.

(4) Large User Base: Artemis is used by more than ten
different universities, like the TU Munich and Univer-
sity of Innsbruck, and is therefore used by thousands
of students every semester. Therefore, improving the
Artemis APAS is directly beneficial for a large user
base.

Before the integration of the AI-Tutor the workflow to use
Artemis for programming exercises was the following [15]:

(1) Instructors prepare an exercise: Mainly involves
the creation of an exercise description, the creation of
a template file, the creation of a sample solution and
the creation of unit tests to test the code submitted
by the students.

(2) Students solve an exercise: Students write code
to solve the problem statement using the integrated
online editor offered by the platform. When students
submit a solution attempt, the code of the submission
is stored in a version control system. For this study,
it was GitLab.

(3) System returns feedback: For each submission,
a build pipeline is triggered that executes the test
cases written by the instructors and returns the test
results with individual messages as feedback to the
students.

The integration of the AI-Tutor extended this workflow
by an additional possibility to request feedback from the AI-
Tutor. This extended workflow has been depicted in Figure
1.

In Figure 2, the Artemis code editor is shown with the
new possibility to request AI feedback by clicking the “View
AI Feedback” button displayed on the top right.

Once this request is send to the server, the current solution
of the student, the exercise description and sample solution
are retrieved from the APAS’ database and an API-call to
the OpenAI servers containing the following information is
sent:

1https://github.com/ls1intum/Artemis

Figure 1: Sequence diagram of the usage workflow
of the Artemis system extended by the AI-Tutor
functionality.

Figure 2: Artemis code editor with the button to
“View AI Feedback”.

(1) Model: The requested LLM, which is in our case
GPT-3.5-Turbo.

(2) Message: The prompt which the LLM should take
into consideration. This prompt can be seen in Listing
1.

(3) Temperature: We set the temperature at 0.7 to
balance predictability and creativity in the LLM’s
responses. This level ensures relevant feedback with
sufficient variability for exploring diverse solutions.2

Once having sent this API-call to the OpenAI servers,
we extracted the response of the LLM and displayed it in
a pop-up window without any further modifications. This
can be seen in Figure 3. All the code files needed to adapt
Artemis to display this possibility can be found in Figshare3.

2https://platform.openai.com/docs/guides/text-generation/how-
should-i-set-the-temperature-parameter
3https://figshare.com/s/636a9c5ff8f2c8315f26
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Figure 3: AI Generated Feedback displayed in a pop
up.

The language model receives the following prompt depicted
in Listing 1:

Listing 1: GPT-3.5-Turbo Prompt

Act as a programming tutor and g ive in fo rma l
feedback in language to the student .

The e x e r c i s e d e s c r i p t i o n i s the f o l l ow i ng :
description

The students code l ooks l i k e that at the moment
: current

Do not prov ide a code s o l u t i o n .
The optimal s o l u t i o n should look l i k e that :

solution

Important : Do not prov ide code .

The prompt starts with the main instruction to tell the
LLM to act as a tutor. language is the current selected
language in Artemis. This value can either be English or
German.

description is the the task to be solved by the student.
For this study the students had to implement Pascal’s triangle
and the task was to implement the functions to generate,
display and release the memory for a portion of Pascal’s
triangle [8]. In addition to the task description, the students
were given a starting template with method stubs to start
the exercise with.

We have chosen the Pascal’s triangle exercise to test the
AI-Tutor because:

(1) Foundational programming constructs: The im-
plementation of Pascal’s triangle touches upon many
foundational programming concepts such as loops,
conditionals, arrays, and in some languages, dynamic
memory management. If an AI can give valuable
feedback on this exercise, it indicates its capability
to understand and instruct on tasks involving the
foundational concepts mentioned before.

(2) Algorithmic thinking: The process for creating
Pascal’s triangle involves iterative and recursive think-
ing. This showcases the AI’s capability to handle
a diverse range of algorithmic challenges as many
other algorithm problems involve similar patterns of
thought.

(3) Concept overlap: Many problems in computer sci-
ence and mathematics share concepts with Pascal’s
triangle, e.g., the binomial expansion and combina-
torics. A successful tutoring here indicates the AI’s
potential to generalize its capabilities to related prob-
lems.

(4) Versatility in problem complexity: Pascal’s tri-
angle can be approached in multiple ways. If the
AI-tutor can manage the range of solutions for this
problem, it suggests its robustness in tutoring exer-
cises with different levels of complexity.

(5) Debugging and problem solving: Common mis-
takes are possible in implementing Pascal’s triangle.
An AI-tutor’s ability to diagnose and correct these
signifies its potential to generalize this capability to
other programming challenges.

The last two parts of the prompt, current and solution,
represent the current solution of the student and the optimal
solution defined by the exercise creator, respectively.

To integrate the AI-Tutor we have chosen to not enable
direct interactions with the model because of the following
reasons:

(1) Easier usability: The assumption was that prede-
termining the prompt would simplify the user experi-
ence. By eliminating the chat-bot-style interaction,
we sidestepped the necessity for students to formulate
a question, thus streamlining their interactions.

(2) Controlled environment: A predefined interaction
model provides a more controlled setting, thereby
simplifying measures taken to avoid students from
receiving the solution for the exercise via prompt
engineering [20].

(3) Quality assurance: With a static model, we were
able to ensure that the AI-Tutor offers consistent
pedagogically sound feedback, which is in line with
the course’s learning objectives.

(4) Data privacy: Direct interactions could inadver-
tently lead students to input sensitive or personal
information. A static model minimizes this risk, ad-
hering better to data privacy standards.

(5) Resource efficiency: Direct, dynamic interactions
with the system may consume more resources, be-
cause the chat history should be given as context to
enable meaningful conversations. Therefore, leading
to higher costs as more tokens are used.

(6) Reduction of over-reliance: By limiting direct
interactions, students were encouraged to think crit-
ically and not over-rely on the AI-Tutor for every
minor query or challenge.

When the student presses the button “View AI Feedback”
we store the following information in the database:

(1) Code: The current solution of the student.
(2) Feedback: The feedback returned by the LLM.
(3) User: A user identifier to identify each request.
(4) File: The file on which the student is working on.
(5) Timestamp: The current time.
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3.2 Exploratory Survey

We selected students from the “Introduction to Program-
ming” tutorial as subjects for the experiment. This tutorial is
part of the Bachelor in Computer Science curriculum at the
University of Innsbruck and teaches first year students the
basics in the programming language C. For this experiment
a total of 23 students actively participated. While this may
seem like a modest sample size, it’s important to note that
the qualitative nature of this analysis allowed for a more
in-depth understanding of individual experiences, making the
size not only manageable but also advantageous and given
their recent interactions with traditional, human tutors, these
students were especially appropriate subjects for assessing
an AI-Tutor.

Prior to the data collection and survey implementation,
we introduced the students to the possibility of receiving
feedback from the newly implemented AI-Tutor via Artemis.

In the subsequent tutorial, the students were tasked with
solving the, before described, Pascal’s Triangle task [8]. They
had one week to solve the task. While they were solving
the exercise they were free to choose whether they used the
new AI-Feedback functionality or not. However, when they
pressed the “View AI-Feedback”-button we stored the “AI
Feedback data” (Code at feedback time, feedback returned
by the LLM, User, File and Timestamp) in the database
and when they submitted their current code to the Artemis
system their current solution, test results and timestamp were
saved in the version control system connected to Artemis.

Finally, for the next course, we allotted approximately 15
minutes for the students to complete a questionnaire. In the
survey we asked the following questions based on the Tech-
nology Acceptance Model (TAM)[6]. TAM is a theoretical
model that includes two primary factors that determine an in-
dividual’s intention to use a technology: (1) Perceived Ease of
Use (PEOU) and (2) Perceived Usefulness (PU). The model
has been widely adopted in various fields to understand and
predict the acceptance of newly implemented features.

(1) I find the AI-Tutor easy to use: This is directly
related to the PEOU dimension of TAM. It seeks to
collect the respondents’ perceptions about the ease
of interface and interaction with the AI-Tutor.

(2) Using the AI-Tutor for my tasks enables me
to accomplish the tasks more quickly: This
question is mainly about the efficiency offered by the
AI-Tutor, which can be seen as a subset of PU as it
implies the benefit of time-saving.

(3) Using the AI-Tutor improves my performance:
This touches on the PU dimension by gauging whether
the users feel they perform better in their tasks due
to the AI-Tutor.

(4) Using the AI-Tutor for my tasks increases my
productivity: Again, this is a question about PU.
By increasing productivity, the AI-Tutor is seen as
adding value to the user’s.

(5) Using the AI-Tutor makes it easier to do my
tasks: This question is about both PEOU and PU.

On one hand, it assesses ease of task accomplishment
(PEOU), and on the other, it speaks to the utility
value of the AI-Tutor (PU).

(6) I find the AI-Tutor useful: This is a direct reflec-
tion of the PU dimension, asking the respondent to
evaluate the overall usefulness of the AI-Tutor.

To obtain additional feedback, we asked the following open
questions:

(1) What challenges did you encounter when utilizing
the AI-Tutor?

(2) Do you have any further suggestions on how the
AI-Tutor could be improved?

Both questions aim to uncover specific difficulties or obsta-
cles that users have faced, helping to identify specific areas
for improvement in the design or functionality of the AI-
Tutor. Lastly, we asked questions about their demographics,
including their highest degree, their current semester and
their programming experience.

3.3 Data Analysis

The data analysis involved first the combination of two
datasets: The data saved when AI-Feedback was requested
and the data saved when the students submitted their solu-
tions. The “AI Feedback” dataset provided insights into the
code at feedback time, feedback from the AI model, user de-
tails and timestamps. The student submissions included the
code at submission time, the test results and the respective
timestamps.

For accuracy, students who did not solve the exercise and
did not engage with the AI-Tutor were excluded from the
qualitative analysis allowing for an assessment of a total
of 12 participants. This analysis was designed to identify
patterns, and insights from the student responses, ensuring
a comprehensive understanding of their experiences with the
AI-Tutor. This analysis included:

(1) Temporal Coding: Students’ submissions and feed-
back request times were identified and marked in
different colors to identify interaction patterns of
students.

(2) Thematic Coding: Students’ responses from the
open-ended questions were initially read and re-read
to identify common themes and patterns.

(3) Theme Development: The patterns were grouped
under broader thematic categories, and a narrative
was constructed around each theme. This involved in-
terpreting the data within the context of this study’s
research questions.

Key insights derived from this qualitative analysis were
essential in understanding the intricacies of the student in-
teractions and experiences.

4 RESULTS

In the following, we present the results of the conducted
analysis. We divided this section into three subsections, each
addressing a specific research question.
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4.1 Student Interaction

Overall, the following interaction patterns emerged from the
analysis of the data. Four students neither made submissions
to Artemis nor sought feedback from the AI-Tutor. One
student made a single submission to Artemis without asking
for any feedback from the AI-Tutor. In contrast, a different
student sought feedback from the AI-Tutor once, yet did
not submit anything to Artemis. Two students made several
submissions to Artemis without seeking feedback from the
AI-Tutor. Different patterns were observed, with one student
displaying each of the following behaviors: making a single
submission to Artemis and seeking feedback from the AI-
Tutor once, making multiple submissions to Artemis and
asking for feedback from the AI-Tutor once, and making a
single submission to Artemis while seeking feedback from the
AI-Tutor multiple times. It is particularly noteworthy that
12 students worked intensively with both systems, uploaded
numerous submissions to Artemis and frequently asked for
feedback from the AI tutor.

Considering its significance, we primarily focus on the
behavior of the 12 students who exhibited high interaction
rates with both Artemis and the AI-Tutor. Figure 4 illus-
trates the timestamps when the students asked the AI-Tutor
or submitted their solution to the APAS. On the Y-Axis,
each line corresponds to a student and the X-Axis can be
interpreted as a timeline starting with 2023-05-23 and ending
with 2023-05-29. The red points in this figure indicate the
time at which a student submitted their code to APAS. indi-
cate the exact time at which a student requested feedback
from the AI-Tutor. This figure shows that there are mainly
two different ways in which students interact with the AI
tutor. Based on this timeline, we were able to derive two user
personas.

4.1.1 Continuous Feedback - Iterative Ivy. Iterative Ivy rep-
resents students who utilize the AI-Tutor intensively before
their initial submission to the APAS. These students often
begin without a complete solution and turn to the AI-Tutor
for guidance on understanding and solving the exercise. The
AI-Tutor, in its capacity, guides through specific instructions
encompassing aspects like function implementation, memory
management, and value calculation. Over multiple feedback
cycles, students refine their solutions. When the AI-Tutor’s
feedback shifts towards minor optimizations, students tend
to transition to submitting their work to the APAS, aiming
for a perfect score.

4.1.2 Alternating Feedback - Hybrid Harry. Hybrid Harry
exemplifies students who alternate between the AI-Tutor
feedback and APAS submissions throughout their coding
process. Typically, they begin their tasks by seeking initial
insights from the AI-Tutor even before submitting a solution.
Some send repeated requests for feedback on the same code
segment, indicating potential uncertainties or the need for
more explicit guidance. These students tend to submit their
work to the APAS after establishing a foundation of their

code. Notably, the AI-Tutor recognized incomplete or non-
functional implementations, which students corrected after
being told so by the AI-Tutor.

Main Findings for RQ 1

We identified two user personas: (1) Continuous Feedback
- Iterative Ivy, who relied mainly on AI feedback before
final submissions to APAS, and (2) Alternating Feedback
- Hybrid Harry, who alternately used the AI-Tutor and
APAS submissions throughout the process.

4.2 Student Experience

Figure 5 represents the distribution of user responses based
on the questionnaire defined in Section 3. The responses are
presented as horizontal stacked bars. Each bar represents a
different statement, and the segments of the bar represent
the proportion of responses for each level of agreement. The
position of the bars along the X-axis reflects the average
sentiment of the responses, ranging from negative on the
left to positive on the right. The zero point serves as a
reference for interpreting Figure 5. If the majority of a bar
lies to the left of this point, it generally indicates a more
negative sentiment. Conversely, if it is situated to the right
of the zero point, the sentiment is predominantly positive.
Like this, the figure allows us to easily visualize how users
perceive the AI-Tutor and its benefits. Examining this figure
we found that reactions were mixed, ranging from positive to
equally negative. However, the polarized responses appear to
neutralize one another, resulting in a largely neutral overall
response.

Mapping the Likert scale from -3 to +3, using 0 as a
neutral midpoint. The average sentiment for each answer is
the following:

∙ I find the AI Tutor easy to use: Somewhat Agree
(1.29).

∙ Using the AI-Tutor for my tasks enables me to ac-
complish the tasks more quickly: Neutral (-0.29).

∙ Using the AI-Tutor improves my performance: Neu-
tral (-0.43).

∙ Using the AI-Tutor for my tasks increases my pro-
ductivity: Neutral (-0.43).

∙ Using the AI-Tutor makes it easier to do my tasks:
Neutral (0.14).

∙ I find the AI-Tutor useful: Neutral (0.14).

Only the statement “I find the AI Tutor easy to use”
received an other than neutral average response, indicating a
mild agreement.

Regarding the open questions about challenges encoun-
tered while using Artemis and its AI-Tutor, student feedback
consistently touched on several main themes:

(1) Desire for Greater Specificity: The AI-Tutor’s
responses were perceived as too generic. Students
preferred more context-specific feedback pointing di-
rectly to improvement areas in the code.
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Figure 4: This figure shows the times when each student asked the AI-Tutor or submitted a code solution to
the APAS.

Figure 5: Students’ satisfaction with the AI Tutor.

Preprint — do not distribute.



Eduard Frankford, Clemens Sauerwein, Patrick Bassner, Stephan Krusche, and Ruth Breu

(2) Request for Increased Interactivity and In-
terface Concerns: Students expressed the wish for
enhanced interactive capabilities with the AI-Tutor,
such as the ability to ask follow-up questions after ini-
tial feedback. Additionally, the interface was criticized
because there was no possibility to see old feedback
because once the feedback window was closed one
could only request new feedback.

(3) Demand for Concrete Examples: To supplement
the written feedback, students believed that concrete
code examples would help them interpreting the AI’s
suggestions.

(4) Apprehension about Learning Inhibition: Some
students feared that using the AI-Tutor might lead to
over-reliance which would slow down their learning
progress.

In terms of general feedback, students mentioned the sys-
tem’s potential, but also that it is notably perceived as an
early-stage prototype. Furthermore, they compared its cur-
rent utility to rudimentary software aids, expressing hope for
more refined, context-aware feedback in future iterations.

Main Findings for RQ 2

Some students found the system useful others stated
the opposite resulting in an overall neutral result regard-
ing the TAM. However, answers to the open-questions
revealed that students, which gave mostly negative re-
sponses found the feedback to be too generic and lacking
concrete examples.

4.3 Lessons Learned

The practical integration of a large language model into an
APAS offered valuable insights into the system’s strengths
and weaknesses. Through this experience, several key lessons
and actionable insights can be derived.

A key lesson learned is that the AI-Tutor exhibits the
capacity for real-time, personalized feedback provision. We
have found that the system tends to return a more high level
explanation of the task, if the students had not yet written a
lot of code. When the student has already written much code
that is mostly correct, then the system tends to start giving
recommendations on how to improve the code quality. For
example, to add comments explaining the code or to change
ternary operators to if-statements for better readability. An
other surprising insight is that the AI-Tutor was able to give
feedback on logical and semantic issues. We found that if stu-
dents had defined wrong boundary conditions to terminate a
loop, then the AI-Tutor recognized this and proposed to the
student to change this condition. This immediate feedback
helped students to quickly correct their errors and thereby
mitigating the acquisition of poor coding practices. Addi-
tionally, the system’s inherent ability to serve feedback to a
large, diverse student population in real-time underscores its
applicability in large-scale educational contexts, particularly
in Massive Open Online Courses (MOOCs).

However, we also learned that AI-Tutoring does not come
without its challenges. The AI-Tutor, while efficient, occa-
sionally delivered only general feedback, which means that
there’s room to refine its responses for more detailed, code-
specific guidance. Analyzing the feedback provided by the
AI-Tutor we found that from 75 feedback requests 55(66.6%)
were useful and 20(26.6%) were categorized as not useful.
Among the 20 not useful responses we found that three re-
vealed the solution of the exercise to be solved, four answers
were hallucinations and 13 were too general to be helpful
in the students situation. Mostly, if the answers were too
general, we found that the AI-Tutor explained the exercise
to the student even-though his or her solutions was already
very sophisticated. The hallucinations were mainly about
the AI-Tutor stating that a function looks well implemented,
although there was no student implementation there yet or
that a function should be implemented that was already
implemented by the student.

Additionally, as the existing system did not allow any in-
teraction, we learned that enhancing its capability to address
follow-up queries would improve the learning experience. Re-
garding the operational dependency, we found that downtimes
in the API could jeopardize the tutor’s functionality.

We also found that it is important to address students’
over-reliance concerns, encouraging them to use the AI-Tutor
without the fear that their learning progress might be hin-
dered. Additionally, the feedback quality might get compro-
mised due to context limits of models like GPT-3.5-Turbo.
Exploring ways to manage this limitation effectively will be
beneficial. Despite careful prompt crafting, there were in-
stances where the AI-Tutor revealed solutions. Ensuring that
the model maintains adherence to the guidelines is a pivotal
lesson.

Main Findings for RQ 3

Implementing an AI-Tutor in an APAS showed that AI
can support human tutors, allowing them to focus on
deeper personal interactions. However, improvements are
needed, as the AI’s feedback was effective only 66.6%
of the time, being too generic, revealing solutions, or
incorrect. Additionally, some students worry that using
the AI-Tutor may slow their learning progress.

5 DISCUSSION

In this study we found mainly two usage strategies adopted
by students when interacting with the AI-Tutor. It is im-
portant to understand these user personas, as they provide
insights that can inform the design of AI-powered educa-
tional systems to be able to fit different learning styles and
strategies. First of all, we defined the user persona called
Iterative Ivy. Users assigned to this persona first used the
AI-Tutor intensively and only when the solution was already
very advanced started to submit their solutions to the system.
This approach seems to favor a traditional, linear program-
ming strategy: (1) Comprehending the problem, (2) Writing
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a complete solution, and then (3) Validating the solution.
By seeking continuous feedback from the AI-Tutor, these
students ensured they were progressing on the right track
before submitting their final solution. This finding suggests
that AI-Tutors are beneficial to students who prefer to seek
guidance and validation throughout their learning process,
rather than just at the end. However, a potential concern
here could be an over-reliance on the AI-Tutor. The contin-
uous feedback-seeking behavior may stem from uncertainty
or lack of confidence, which needs to be addressed in further
pedagogical planning. Secondly, we defined the user persona
Hybrid Harry. Whose strategy contrasts sharply with Itera-
tive Ivy’s approach. Users assigned to this persona alternated
between seeking AI-Tutor feedback and submitting solutions
to the APAS. These students opted for an iterative learning
approach, which represents a more agile programming prac-
tice. This suggests that AI-Tutors and APAS can facilitate
active, self-regulated learning. However, the risk here lies
in the potential for students to rely too heavily on the test
feedback to guide their work, which could inadvertently lead
to a trial-and-error approach to solve an exercise, rather than
understanding the core principles.

Furthermore, given the responses to the TAM questions
we found that students have mixed feelings regarding the
usefulness of the AI-Tutor. While some students do not ap-
preciate the help of the AI-Tutor others do appreciate it. It
is important to identify the exact reasons why this is the
case, but a first analysis indicates that the main reasons for
the negative responses are user interface and prompt related.
Students who responded negatively to the TAM questions
also complained about the inability to ask follow-up ques-
tions and that the system did not return code examples or
that the feedback is too general. The problem regarding the
inability to ask follow up questions can be solved by changing
to a chat-bot based system. The second problem regarding
the missing code examples can be addressed by changing
the prompt to allow code examples as responses. As a re-
sult, it is reasonable to conclude that GPT-3.5-Turbo can be
successfully used as a language model behind an AI-Tutor.

Addressing fears that AI-Tools may inhibit learning success
is also crucial. Reiterating the tool’s purpose to supplement
rather than supplant traditional learning methods may de-
crease such concerns.

Additionally, the use of AI-Tutors in programming ed-
ucation, as seen in this research, presents a unique set of
learned lessons. Regarding ITS we have found that LLMs
offer a distinct adaptability advantage, because in conven-
tional ITS, altering feedback mechanisms often demands
intricate changes in the system’s codebase, which can be
time-consuming and resource-intensive. However, with LLMs,
modifications are primarily done through prompt engineer-
ing. Given their vast training data, refining or adjusting the
prompts can quickly adapt the feedback the model provides,
without needing to change its internal mechanics. This allows
educators to swiftly adapt to changing educational needs or
methodologies.

Among the advantages of AI-Tutors over traditional human
tutors, the promptness of feedback provided by AI-Tutors
stands out as a game-changer. The capacity to instantly
identify and correct errors can be vital for students learn-
ing programming, because quick feedback can minimize the
propagation of misunderstandings and bad coding practices.
Moreover, the scalability and cost-effectiveness of an AI-Tutor
makes it a compelling choice, especially in resource-limited
settings or with a large student base.

However, these benefits come with their share of challenges.
An aspect of the AI-Tutor that needs attention is its occa-
sional inclination to “hallucinate”, producing responses that
might not be entirely accurate or relevant. In this study,
this primarily manifested when a student had already imple-
mented a correct solution, resulting in the LLM sometimes
advising the student to refine a program that was already
functioning correctly. A potential mitigation strategy could
involve integrating the AI feedback with unit test results.
This would inform the student when their solution meets all
criteria, signaling that subsequent AI feedback may not be
entirely accurate.

The dependence on API availability and the inherent token
limit of models like GPT-3.5-Turbo add an additional layer of
complexity. Any change or downtime in the API can hinder
the AI-Tutor’s operations, and the context limitation imposed
by the token limit can affect the quality of feedback, especially
for more complex or lengthy code submissions.

A more psychological perspective brings forth concerns
about the impact of AI-Tutors on students’ learning progress
and the lack of a personal touch. An over-reliance on the AI-
Tutor might impede students from developing their problem-
solving skills, as they might rely too heavily on instant feed-
back rather than trying to debug and solve problems them-
selves. Additionally, the impersonal nature of an AI-Tutor
might make the learning experience less engaging and less
adaptive to individual student needs, which could affect mo-
tivation and learning outcomes.

These challenges should not overshadow the immense po-
tential that an AI-Tutor holds. By addressing the issues
mentioned, we can create more sophisticated and effective
AI-Tutors that can significantly enhance the educational expe-
rience and outcomes for students learning programming. The
journey towards optimizing AI-Tutors for programming edu-
cation is still in progress, but the destination seems promising.

6 LIMITATIONS

In this paper we mainly considered the following four cate-
gories of validity, also used by [33]: (1) Construct validity, (2)
Reliability, (3) Internal validity and (4) External validity.

6.1 Construct Validity

The research questions were defined using the PICOC system
[24]. The PICOC framework provides a systematic way to for-
mulate research questions by emphasizing five elements: Pop-
ulation, Intervention, Comparison, Outcome, and Context.
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This structured approach ensures that research questions are
both comprehensive and relevant. For this study:

(1) RQ1 primarily addresses the Population, Interven-
tion, Outcome, and Context by examining the nature
of student interactions within the specific context of
an APAS assisted by an AI-Tutor.

(2) RQ2 focuses on the Population, Intervention, and
Outcome by probing the students’ experiences with
AI-driven feedback when guided by the AI-Tutor.

(3) RQ3 encompasses all the PICOC elements, especially
Context, by analyzing the broader lessons learned
from deploying an AI-Tutor within the APAS envi-
ronment.

The research questions were further refined through dis-
cussions with several experts in the field to ensure alignment
with the topic of interest. Leveraging the PICOC system
as a foundation, coupled with the structured data collec-
tion approach and exploratory survey, facilitated a thorough
answering of RQ1–3.

6.2 Reliability

We conducted a systematic data collection and analysis ap-
proach, as detailed in Section 3. Therefore, the process is
both transparent and reproducible. However, it’s crucial to
note that the use of GPT-3.5-Turbo introduced a variable
element. Given the nature of LLMs, not every prompt pro-
duces identical responses on different occasions. As a result,
while the core structure and methodology can be reproduced,
there may be slight variations in the responses generated by
the model across different replications of the experiment.

6.3 External Validity

One potential limitation in this domain arises from the fact
that we integrated the AI-Tutor only into Artemis. How-
ever, a systematic comparison of various APASs confirmed
that Artemis’ basic functionalities are echoed in many other
APASs, deeming it a representative system [27]. Additionally,
the integration of the AI-Tutor can be done platform inde-
pendent, because the approach stays the same, as it should
be possible on all APAS to integrate a pop-up window that
displays the results of the REST API calls.

Another potential threat to external validity is the use of
a GPT model as the foundation for the AI-Tutor. While the
used model is a state-of-the-art LLM and exhibits advanced
conversational abilities, it might not perfectly mimic every
possible LLM’s behavior. Nonetheless, given that the model
is based on the same foundational architectures as most other
prevalent LLMs, and shares many of their characteristics and
capabilities, we argue that the findings related to GPT-3.5-
Turbo can largely be extrapolated to other similar models.
It serves as a representative example, providing insights that
are likely applicable across various LLMs.

Furthermore, the total number of participants can influ-
ence the external validity. In this study 23 students from the
course “Introduction to Programming” participated. This
sample size is too small to conduct a statistically significant

quantitative analysis. As a result, we decided to focus on
a qualitative analysis and report the experiences of imple-
menting and operating an AI-Tutor. This allows for a deeper
exploration of the students’ experiences and behaviors when
using the system. Last but not least, given the students’ re-
cent engagements with traditional human tutors, they were
especially well-suited to evaluate the AI-Tutor.

6.4 Internal Validity

This study study largely leaned on qualitative analysis, which
can sometimes introduce subjective bias. Nevertheless, the
methodological rigor employed aimed to minimize such biases.
The detailed procedures involved in the qualitative analysis
have been outlined in the research methodology section. By
closely following these methodological steps, we have aimed
to ensure that the findings are both credible and trustworthy.

7 CONCLUSION

In this study of integrating the model behind ChatGPT as
an AI-Tutor into the Artemis APAS, we uncovered both
the immense potential and challenges of such an application.
While the AI-Tutor offered advantages like timely feedback
and scalability, its limitations were apparent. These included
occasionally generic feedback, lack of interactive dialog, op-
erational vulnerabilities related to API availability, potential
over-reliance by students, the absence of a human touch, and
technical constraints like context limits.

The vast potential of AI-Tutors in programming education
is undeniable, but careful implementation and ongoing re-
finement are essential. This exploration underscores the need
for more research in this domain, balancing technological
progress with the irreplaceable human aspect of education.

Future work should focus on enhancing AI-Tutor’s feedback
specificity, interactivity improvements, user interface refine-
ments, and addressing the token limit and prompt engineering
challenges. The potential exploration of more powerful mod-
els like GPT-4 may further improve the feedback quality.
This study’s findings serve as a foundation for continued
research in this innovative intersection of AI and education.

8 DATA AVAILABILITY

The data supporting the findings of this study are openly
available in Figshare 4. The dataset comprises the following:

(1) Data Analysis ANONYM.xlsx:
(a) Sheet 1 : Contains extracted data from the data-

base, such as Code, Feedback, User, Time, as
well as various descriptive statistics, detailing,
for instance, the frequency with which each
user consulted the AI-Tutor, submissions to the
APAS, and the final score.

(b) Sheet 2 : Houses the responses from the qualita-
tive survey.

(c) Sheet 3 : Features an analysis that groups submis-
sions and the state of the code when querying the

4https://figshare.com/s/636a9c5ff8f2c8315f26
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AI-Tutor. It assesses the quality of the feedback
and observes code alterations post-feedback.

(2) Student submissions to the version control sys-
tem: Comprises multiple anonymized folders, each
storing the code a student uploaded to the system.
This code is augmented at the end with annotations
detailing if the student had previously consulted the
AI-Tutor and, if so, the associated timestamps.

(3) Artemis-Files: Contains all essential files to be in-
tegrated into your public Artemis project to activate
the AI-Tutor functionality. These files are designed
to work with the open-source Artemis project.5 A
comprehensive repository has not been released due
to challenges associated with its anonymization.

It is essential to note that all personal identifiers have
been removed to maintain confidentiality and adhere to data
protection principles.
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