Plagiarism Detection and its Effect on the Learning
Outcomes

1t Jonnathan Berrezueta-Guzman
Technical University of Munich
s.berrezueta@tum.de

Abstract—The consistent effort and autonomous problem-
solving required in programming instruction presents unique
educational challenges, with plagiarism being a significant factor
negatively correlated with independent programming perfor-
mance. The prevalence of digital communication and information
exchange further complicates this issue.

This research paper aims to investigate and discern patterns of
plagiarism among first-year computer science undergraduates. To
investigate the research questions, we conducted three controlled
experiments. The first experiment demonstrated that students
were more likely to commit plagiarism when provided with the
opportunity to do so. The second experiment corroborated this,
showing a tendency for plagiarism among students who had not
previously been exposed to any plagiarism mitigation strategies.
The third experiment revealed that early awareness of plagiarism
mitigation strategies leads to enhanced student performance,
indicating that awareness of these measures acts as a stimulant
for autonomous learning.

Index Terms—programming education, interactive learning,
online training and education, software engineering education
for novices, vision for education in the future

I. INTRODUCTION

Plagiarism poses a substantial challenge in introductory pro-
gramming courses, presenting both immediate and long-term
consequences for students [1]. Extensive research has estab-
lished a strong correlation between plagiarism and academic
failure, with students who engage in plagiarism consistently
achieving the poorest performance in individual examinations
[2]. Moreover, the implications of plagiarism extend beyond
the academic realm, impacting students’ professional lives and
imposing limitations on their subsequent performance [3], [4].

The task of plagiarism detection in assignments within
large-scale courses presents a formidable challenge. This
complexity arises from the fact that the required effort for
plagiarism detection is directly proportional to the number of
students, while the number of reviewers available for the task
usually remains constant [5]. Without the aid of specialized
tools, determining instances of plagiarism, as well as identify-
ing the originators/creators (providers) and recipients (takers)
of plagiarized content, becomes a non-trivial problem within
the domain of computer science education [6].

This paper makes a significant contribution by conducting
three rigorous experiments to validate key hypotheses. Firstly,
the findings confirm that the presence of an opportunity to do
so significantly increases the likelihood of students engaging
in plagiarism. Secondly, the results demonstrate that students

2" Markus Paulsen
Technical University of Munich
markus.paulsen @tum.de

37 Stephan Krusche
Technical University of Munich
krusche @tum.de

who lack prior exposure to plagiarism control measures are
more prone to committing plagiarism. Lastly, the study reveals
that early communication of plagiarism control measures at
the beginning of the course serves as a motivational factor for
students, leading to improved academic performance.

Notably, the outcomes of the third experiment hold sub-
stantial implications. The data unequivocally indicate that
students who are aware of and adhere to plagiarism control
measures achieve their intended learning outcomes more ef-
fectively (achieving higher grades). This accomplishment in
turn helps them to avoid complications in subsequent subjects
throughout their academic journey, safeguarding the quality
of their education. Moreover, these positive outcomes extend
beyond the realm of academia, benefiting students in their
future professional opportunities.

This paper systematically presents its content in the follow-
ing way: Section II is dedicated to reviewing and summarizing
relevant existing related work, along with their respective
conclusions and limitations. Section III explains the method-
ology adopted in this research. It outlines the organizational
aspects of the conducted courses and describes the specific
tool employed for plagiarism control. Section IV presents a
meticulous overview of the experimental design, data collec-
tion procedures, and the subsequent results derived from the
experiments.

In Section V, the paper offers a discussion to critically
analyze and interpret the obtained results. This section serves
to emphasize the significance of the findings, considering their
implications and potential ramifications. Finally, Section VI
concludes the research by summarizing the key insights and
conclusions drawn from the study. It also presents potential
avenues for future research, highlighting areas that warrant
further investigation and suggesting potential directions for
improving plagiarism control.

II. RELATED WORK

According to Jenkins and his colleagues, plagiarism hap-
pens mostly when the student encounters the opportunity [7].
Additionally, some researchers experimented and concluded
that plagiarism is related to high levels of failure in academic
courses and especially those involving programming exercises
[8], [9]. Therefore, including a plagiarism control system for
the source code of programming assignments has motivated

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or

reuse of any copyrighted component of this work in other works.

https://orcid.org/0000-0001-5559-2056
mailto:s.berrezueta@tum.de
https://orcid.org/0009-0008-7360-7870
mailto:markus.paulsen@tum.de
https://orcid.org/0000-0002-4552-644X
mailto:krusche@tum.de
Santiago
© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

students to work autonomously and to improve their academic
performance [4], [10].

Kaya and Ozel extended the Moodle system with the GNU
Compiler Collection (GCC)! and the Measure of Software
Similarity (MOSS)?> source code plagiarism detection tool
to decrease the effort for the assessment of programming
assignments and prevent students from plagiarism in the Data
Structure course [13]. The experiment was conducted with two
courses of the same subject, and the same professor but in
different years.

The results indicated that the first group (which was not
aware of the plagiarism check) was the one with lower
performance (29.8 % of students failed) in comparison to
the second group (which was aware of the plagiarism check)
where 21.6 % of students failed (8.2 % lower failure rate).
As it was expected, the first group was the one with a higher
amount of plagiarism cases, taking into account a threshold
of 50 % of similarity. However, the experiment had only 3
programming assignments and also included 1 midterm and 1
final exam.

Pawelczak used a tool for tokenizing and averages certain
characteristics of the source code [14]. He analyzed 5 years
of data from a course on the introduction of programming in
C language with 7 programming exercise assignments. The
typical threshold used was 80 % in this study due to the
average length of the exercises.

The results established that since the implementation of the
tool, the performance of the students in examinations is about
8.6 % better. They also find that about 84 % of the stu-
dents who failed plagiarized in the programming assignments.
Additionally, the tool detected about 92 % of students who
abandoned the course were involved in committing plagiarism.

Pawelczak also implemented an experiment where he com-
pared two introductory programming courses on their assign-
ments and their learning outcomes [15]. He checked the stu-
dents’ submissions (for 7 assignments in total) for plagiarism
directly after the submission deadline while for the second one,
we conducted the plagiarism check after the semester ended.

The results indicate that the average percentage of stu-
dents plagiarizing in the first group is 11.1 %, while in
the second group is 35.1 % (24 % higher than the first
group). Additionally, the second group was the one with lower
performance in the final examination. However, the students
in this group presented better skills in fundamental coding.
Pawelczak believes this is due to the students being forced
to edit their implementations (adding loops, outsourcing code
into functions, etc.) in order not to be caught by the plagiarism
detection tool.

On the other hand, Halak and El-Hajjar presented two tech-
niques to prevent plagiarism [16]. The first one is assigning a

Tt is a free and open-source compiler system developed by the GNU
Project. It is used to compile various programming languages such as C,
C++, Objective-C, Fortran, Ada, and others [11].

2It is an automatic system for determining the similarity of programs. To
date, the main application of Moss has been focused on detecting plagiarism
in programming classes [12].

unique exercise per student while the second one is conducting
individual presentations. The first technique suggested a con-
siderable reduction in plagiarism detection in different classes,
as there was a reduction of inter-report similarity of 13 %.
The second technique suggested that its application motivated
the students to avoid plagiarism. However, Halak and El-
Hajjar didn’t mention the necessary effort of the instructors
of conducting these techniques.

Finally, Moss and his colleagues conducted a systematic re-
view of 83 empirical papers to clarify the psychological causes
of plagiarism [17]. The finding of this study established that
the possible causes can be the emphasis on competition and
success rather than development and cooperation coupled with
impaired resilience, limited confidence, impulsive tendencies,
and biased cognitions.

These studies and their results collectively contribute to
the understanding of plagiarism in programming courses and
provide insights into effective approaches for plagiarism de-
tection, prevention, and fostering academic integrity among
students.

III. METHODOLOGY

This research study aims to address three primary research
questions:

« RQ1: Do students exhibit a higher propensity to engage
in plagiarism when presented with an opportunity?

¢ RQ2: Does prior experience with plagiarism checks en-
hance students’ motivation to work autonomously, com-
pared to those without such experience?

e RQ3: Does the announcement of plagiarism checks at
the beginning of the course yield beneficial outcomes for
students?

To address these questions, we devised and executed three
experiments spanning three semesters within the Information
Engineering bachelor’s degree program: winter semester 2021-
2022 (WS21/22), summer semester 2022 (SS22), and winter
semester 2022-2023 (WS22/23).

During the winter semesters, we conducted an intro-
ductory programming course (InProg) targeted at first-
semester students, facilitating their progression from beginner
to intermediate-advanced programming skills. In the summer
semester, we offered an Introduction to Software Engineer-
ing (ISE) course, intended for second-semester students to
develop advanced to professional-level software engineering
and programming skills.

While it is not mandatory to have completed InProg to
enroll in ISE, students are expected to leverage their acquired
knowledge from InProg to successfully tackle the proposed
exercises and the final exam.

These courses employ interactive learning, which aims to
minimize the temporal gap between theoretical learning and
practical application by students [18]-[21].

A. Course Organization

InProg. The introductory programming course course takes
place over 12 weeks in which students not only take the lecture
but also work on exercises that prepare them for the final exam.

Quiz exercises. At the beginning of each lecture, students
are presented with a set of 3-5 questions associated with
the topics covered in the previous lecture. They are given 5
minutes to solve these quiz exercises. When the time is up, the
instructor proceeds to explain the solution and then addresses
any doubts or objections raised by the students afterwards.

Tutor exercises. These exercises consist of two assignments
per week and primarily focus on programming tasks of easy
to medium difficulty. Students collaboratively work on these
exercises during tutoring sessions, fostering the development
of soft skills such as effective communication and teamwork.
The collaborative nature of these exercises prepares students
for independent problem-solving in subsequent homework
exercises.

Homework exercises. These assignments comprise two
weekly programming exercises of medium to hard difficulty.
The submissions of these exercises contribute to the practical
part (Prog) of the InProg course’s final grade and aid in
preparing students for the final exam, which determines the
theoretical part (In) grade of the course.

Presentations. Homework exercises and tutorial exercises
are presented by students each week during the tutorial ses-
sions. This is a suitable environment to discuss the solutions
and resolve any remaining questions. This is an additional
step to check if students can understand and present their own
solution.

ISE. The course Introduction to Software Engineering fol-
lows a similar methodology to InProg, but with the inclusion
of other exercise types, such as text exercises and modeling
exercises, in addition to programming tasks. Students take it
in their second semester, as it builds on the InProg.

B. Plagiarism Detection Process and Tool

Artemis is an open-source learning and research platform?.
It is designed to facilitate the creation and automated assess-
ment of programming, modeling, text, and file uploading ex-
ercises [22]. Students participate in programming exercises by
committing and pushing code in a version control repository.
They receive feedback from automatically executed tests and
static code analysis in a continuous integration environment.
Artemis incorporates a semi-automatic system for detecting
similarity among submissions of the same exercise [23].

In order to achieve this, Artemis integrates JPlag, a plagia-
rism detection service equipped with a Greedy-String-Tiling
algorithm [24]. JPlag is capable of identifying pairs of similar
programs within a given set of programs and supports multiple
programming languages, including C, C++, Java, and more. It
compares the abstract syntax tree of two programs. This way,
the comparison hits even if students copy the code and make
simple changes to variable names or the order of statements.

3https://github.com/ls lintum/Artemis

While other tools may employ different detection methodolo-
gies, such as Neural Networks [25], JPlag has proven to be
highly efficient in terms of analysis time and accuracy when
identifying instances of plagiarism among submissions.

When students upload their solutions through Artemis,
instructors have the option to manually initiate a similarity
analysis run by setting a threshold based on the exercise’s
length. For instance, the threshold can be determined by
the average number of lines of code required to complete a
programming-based exercise, the length of words in a text-
based exercise, or the components used in a model-based
exercise.

Figure 1 illustrates the sequential steps involved in the
automatic checking, manual analysis, student notification, stu-
dent statement, and verdict of a plagiarism case, carried out
throughout the utilization of the Artemis platform. These steps
contain the following actions:

1. Automatic check: Once the exercise instructors activate
the automatic plagiarism checker in the plagiarism detection
screen in Artemis by clicking on the “Detect Plagiarism”
Button, all student submissions are compared against each
other using JPlag’s greedy string tiling algorithm in order to
obtain a measure of the similarity of a submission pair (in
percent) and a plagiarism report describing the similarities
found. Artemis now displays to the exercise instructors every
submission pair above the aforementioned threshold and an
overall similarity distribution.

Overall, this step preprocesses and discards a significant
number of submission pairs that are not suspected to be
involved in plagiarism (indicated by a similarity measure
below the threshold). Therefore, the exercise instructors can
focus exclusively on the cases which are suspected to be
plagiarism cases.

2. Manual analysis: The exercise instructors inspect the
plagiarism report, which displays the two similar code files
side by side. The part of the code that was not included in the
template and overlaps is highlighted in blue. Subsequently, the
exercise instructors decide whether the similarities found are
indeed indicative of plagiarism.

Therefore, they try to spot typical plagiarism patterns and
other recognizable indications like removing/adding white
spaces, renaming variables, identical variable naming strate-
gies, changing between similar types of control statements,
identical comments, identical text patterns, identical mistakes,
and identical elements within a UML diagram. In case there
is sufficient reasonable evidence of plagiarism, the exercise
instructors will mark the submission pair as a ’plagiarism
case”. Otherwise, they will mark the submission pair as a ’no
plagiarism case”.

This step is necessary as automatic checking is not yet able
to accurately detect all cases and would produce too many
false positives. Therefore, the exercise instructors manually
review all cases with high similarities and accept or deny each
case.

3. Student notification: If the exercise instructors (after
a second screening) decide a particular pair of submissions

https://github.com/ls1intum/Artemis

[1. Automatic check H 2. Manual analysis H 3. Student notification H 4. Student statement H 5. Final verdict j

Fig. 1. Procedure of the plagiarism check: The instructors evaluate the results of the automatic check for plausibility and notify the identified students, who
can submit a statement on their case. Depending on the severity of the plagiarism and the student’s statement, the instructors decide on the final verdict.

to be a case of plagiarism, they will issue a notification
email in Artemis to both involved students. The email will
inform them of the suspected plagiarism and the consequences
they can expect (e.g., failing the course and only getting one
more chance), and the opportunity to submit comments within
the following seven days. In either case, both students are
suspected of plagiarism, as there is usually no way to clearly
identify the sender and the participant of an deception before
contacting them. This step is required to inform the student of
the suspected plagiarism, which may or may not subsequently
result in a plagiarism conviction.

4. Student statement: The student responds to the notifi-
cation by using the link embedded in the email. Using this
link, the student can view the comparison between the own
work and the anonymized work of the other involved student.
The student explains in detail why the work is supposed to be
original and therefore the suspicion is unfounded.

The student must demonstrate that the assumptions made
by the exercise instructors regarding the plagiarism patterns
detected were incorrect or that the accuracy of the detection
was too low. Likewise, they have the opportunity to admit
their misconduct and facilitate further proceedings. This step
allows the student to justify the submission against suspicion
of plagiarism, which may be warranted in the case of a false
positive.

5. Final verdict: The exercise instructors meticulously
assess and evaluate whether the justifications made by the
student are steadfast. This involves analyzing whether the
students’ justification demonstrate that they fully mastered the
concepts taught in the lecture and exercises, and whether there
are any unresolved gaps or problems in the reasoning of the
exercise instructors.

Finally, the exercise instructors decide on a verdict of either
“plagiarism” (in case the justifications were not steadfast),
resulting in a failing grade, or “no plagiarism” (in case
the justifications were steadfast), which has no immediate
consequences, except that students are now generally more
careful with their submissions. A third alternative would be to
deduct points in the respective exercise and to issue a warning.

In this last step, the exercise instructors pronounce their
final verdict for the two students involved, whereupon the
appropriate consequences are announced. This final verdict is
documented in Artemis together with the plagiarism report in
case the data is needed later, e.g. if the student complains to
the examination board or sues the universities in court.

The identification of the faker (the student who engaged
in copying) and the giver (the student who facilitated the
copying) can sometimes be ascertained through the discussions

conducted with the involved students in a plagiarism case. The
determination of their roles relies partially on the admissions
provided by the students who acknowledge their involvement.

Verification is feasible due to the availability of precise
data in Artemis, including the specific number and timing of
commits made by the students. Typically, the giver is charac-
terized as the student who initiates and completes the task first,
while also demonstrating a higher frequency of commits. Con-
versely, the taker often exhibits contrasting behavior, typically
commencing the task later and generating fewer commits. By
considering these observed patterns and leveraging the data
provided by Artemis, instructors can discern the roles of the
taker and giver in the plagiarism case.

IV. EXPERIMENT AND RESULTS

A total of three experiments were conducted over three
semesters. The organization of these experiments, along with
their respective pre-conditions, student groups, and the corre-
sponding courses involved, are presented in Table I.

TABLE I
ORGANIZATION OF THE EXPERIMENTS. AWARENESS MEANS WHETHER
STUDENTS HAVE BEEN INFORMED ABOUT PLAGIARISM CONTROL.

Experiment Students’ groups Awareness Course
WS21/22 | HNOI (70 students) | Simce the middle 1y b0
of the course
HNO1 (44 students) Since the beginning
8522 GAO1 (1621 students) of the course ISE
WS22/23 HNO2 (61 students) | Smce the beginning | b o
of the course

A. First Experiment - WS21/22

The objective of this experiment was to investigate whether
students (HNO1 group) in the InProg course engaged in
plagiarism when they were not initially informed about the im-
plementation of plagiarism checks. Additionally, we focused to
assess their behavior after the announcement of the plagiarism
checks.

In order to achieve this, we chose not to inform the students
about the plagiarism control at the beginning of the semester
but rather in the middle of the course period, specifically in
week 8. During that week, we provided detailed information
on how the checks were conducted (as described in the
previous section) and the penalties.

Figure 2 illustrates that the plagiarism control was initiated
in exercise HO3EO1 (where the x-axis starts), as the initial two
weeks primarily involved simple exercises with minimal lines
of code (conducting a plagiarism analysis on these exercises

would have resulted in an unnecessarily high number of
plagiarism accusations).

We observed an average of 20 instances of similarity
exceeding the predetermined threshold per exercise during the
first 8 weeks (the number of possible cases of similarity likely
depends on the difficulty level of each exercise). However,
in week 8, during the lecture, we explicitly announced to
the students that plagiarism checks would be conducted for
assignments starting from week 9.

As a result, we subsequently observed a significant decrease
of 84 % in the number of submissions with similarity above the
threshold for homework HO9EO1. Despite the prior notification
during the lecture, we had to issue plagiarism notifications to
4 students, indicating their involvement in plagiarism (First
notification).

40

35

was adequately complex, presented a specific context, and
demanded students to propose their solutions. Furthermore,
the notification of the plagiarism control served as an alert to
refrain from copying, resulting in increased time investment
and commits compared to the other exercises

Similar patterns were observed in exercises HO9E02 and
H13EO1, where a substantial number of hours were invested
and only a few instances of similarity were found. However,
in the case of HI13EQ1, these instances were confirmed as
instances of complete plagiarism. Hence, it can be inferred
that the occurrence of plagiarism in these exercises can be at-
tributed to their complexity. The students were confronted with
challenging exercises that pressured them to utilize plagiarism
in order to resolve them.

40

35

30

25

350

300

250

200

30 2 5

25
21

6E01

23
21
"19..,.20
............... 10eeenns
9 .
6 5 °
44 3
II I I I1 22
[| |
o~
o
2
-
-
T

mmm Similarity cases over the threshold EEEE First notification (warning)

HO3E01
HO3E02
HO4E01
HO4E02
HOS5E01
HO5E02
HO6E02
HO7E01
HO7E02
HO8EO1
HO8E02
HO9E01
H10E02
H12E02
H13EO

HO

mmm Second notification (Failed Prog) +++=+++ Logarithmic trendline

Fig. 2. Incidents of code similarity identified through the use of Artemis, in
conjunction with notifications of potential instances of plagiarism throughout
the course assignments.

Additionally, it is worth noting that certain submissions
for homework HO9E02, H10EO1, and H10EQ2 exhibited a
similarity level surpassing the predefined threshold. However,
upon conducting a comprehensive review by the instructors,
it was concluded that no instances of plagiarism were present
in these submissions (false-positive cases). Consequently, the
students involved were not notified of any plagiarism concerns.

In week 11, during the assessment of assignments H11EOI
and H11EOQ2, the plagiarism control was conducted, leading to
the identification of 10 new cases of clear plagiarism involving
students. Out of these 10 students, 4 were notified for the sec-
ond time, resulting in immediate course failure. Additionally,
6 students received their first notification regarding plagiarized
submissions. Overall, there were 8 students who received
a first notification, while 4 students failed the course upon
receiving the second notification.

Through an analysis of the time invested and commits made
in each exercise, Figure 3 reveals that assignment HO9EOI,
which included the initial 4 plagiarism cases, required the
highest amount of time and had the most pushed commits by
students. The instructors conclude that this particular exercise

150

100

e ok N
c w 5 & 8
-
2
-
—
HO2E01 I,
——
—
—
—
—
—
—
—
—
HOSE0] p—
HOSED?
HOGED] p—
——
HO7E0? o
HOBEO] po &
HogED? | —
gy, ————
P ——
— “
I
—
—
Hilpo1 —
—
—
—
H12E0) | —
° @
g

HOGE0?

HO1E01
HO1E02
HO2E02
HO3E01
HO4E01
H11E02
H13E01

B Average commits
----Log. (Average commits)

M Average invested time in hours
«+«Log. (Average invested time in hours)

Fig. 3. Quantitative representation of the average commit frequency and the
quantified time investment required to solve course exercises, as captured from
the Artemis learning platform data.

Out of the 12 students who received at least one notification
for a plagiarism case, 8 exhibited characteristics indicative
of being takers. These students displayed a lower number
of committed activities and invested less time in solving the
exercises compared to their peers who were also involved in
plagiarism cases.

Figure 4 illustrates that exercises HO9EOl and HI3EOI
had the lowest levels of participation. With the exception
of exercise HO6EO1, which had a high level of complexity
(as indicated by the number of attempts in Figure 3), the
complexities of the other exercises were generally at a medium
level.

It was evident that, following the plagiarism control notifica-
tion, students either strived to work independently or gave up.
This finding confirmed our initial expectation, that the takers
would be inclined to avoid making any effort, while the givers
preferred not to share their solutions. Without counting with
the tendency of quite this kind of courses.

At the conclusion of the course, a final exam was ad-
ministered, with the programming component accounting for
70 % of the total grade. The analysis of the results revealed
that the 4 students who received notifications for committing
plagiarism and subsequently failed the practical part of the
course also failed the final exam. Similarly, the 8 students

100%

u 40%

80% [,

60%
40%

20%

0%

HO4ED] | —

HO4E02
HO5E01
HO5E02

HOGEOL p——

HO6E02
HOBEO] p——
HO8E02
HO9EO1
i HO9E02

H10E02 —

H

HIZED] | ——

HO1E01
HO1E02
HO2E01
HO02E02
HO3EO01
HO3E02
HO4E03
HO7E01
HO7E02
H10E01

11E01
H11E02
H12E01
H12E02

Participation ~ mmmm Average score Log. (Participation) -Log. (Average score)

Fig. 4. Quantitative representation of student participation, alongside corre-
sponding average grade distributions, throughout the duration of the course.

who exhibited characteristics consistent with being takers also
failed the exam.

Hence, we can infer that these 8 students were indeed takers.
This outcome validates the efficacy of our plagiarism analysis
in the exercises, as it aligns with our initial expectations.

Finding 1: In the absence of plagiarism control, students
are more likely to engage in plagiarism when presented
with the opportunity.

Furthermore, it suggests that students who commit plagia-
rism, referred to as takers, generally exhibit lower performance
in autonomous examinations. In contrast, students who facili-
tate plagiarism, referred to as givers, tend to demonstrate better
performance.

Finding 2: Following a plagiarism control notification,
students either strive to work independently or simply
give up.

B. Second Experiment - SS22

This experiment involved the comparative analysis of pla-
giarism behavior between two distinct groups of students
within the same subject but in different locations. The first
group consisted of students from Experiment 1, referred to
as the HNO1 group, while the second group comprised stu-
dents who had not previously undergone a plagiarism control
process, denoted as the GAO1 group.

In this experiment, both groups were immediately informed
about the implementation of a plagiarism check for all as-
signments at the beginning of the SS22 semester. The subject
taught during this period was ISE, encompassing programming
tasks, modeling exercises, and text-based assignments.

The average grade between the HNOI and GAO1 groups
exhibited minimal imbalance. The HNO1 group achieved an
average grade of 77.4 %, whereas the GAOl group obtained
an average percentage of 78.3 %, resulting in a difference of
less than 1 %. However, a notable divergence was observed

in the participation rates of the two groups. The HNO1 group
experienced a reduction in participation of 22.6 % (as shown in
Figure 5), while the GAO1 group exhibited a more significant
decrease of 40.7 %, nearly double the reduction (as shown in
Figure 6).

100%

80% .

60% " N RIFTIAN

40%

20%

0%

o
2
Iy
38
T

I Participation

HO6E01 —

HO6E02 _
HO6E03 —

HO7E01

HO3ED3 m——
HOAEO? p——

HO4E03

HO4EO] p—

H11E01
H11E02

o
o
i
o
=
T

HO1E01
HO1E02
HO2E01
HO2E02
HO2E03
HO3EO01
HO3E02
HO8E02
HO9EO1
HO9E02

N Average score eseee Log. (Participation) eeees Linear

(Average score)

Fig. 5. Quantitative representation of student participation, alongside cor-
responding average grade distributions, of the HNO1 group throughout the

duration of the ISE course.

100%

80% vy 1

60%

40%

20% “‘
0%
O H N Mo N o N MO N S N MmN Mmoo
S8 gsgEsegagssssgseEsgs
R R EEEEEEE-EE-EE
8288883838388 8885558
2222222282822

B Participation — EEEEE Average sCore eesee Log. (Participation) —eeese Linear (Average score)
Fig. 6. Quantitative representation of student participation, alongside corre-
sponding average grade distributions, of GAO1 group throughout the duration
of the ISE course.

HO3E03
HO6E02
HO8E02
HO9EO1
HO9E02
H10E01
H10E02
H11E01
H11E02

The occurrence of detected plagiarism cases exhibited a
substantial disparity between the HNO1 and GAOI groups. In
the HNO1 group, only 3 exercises indicated a similarity level
surpassing the established threshold, as shown in Figure 7. In
contrast, the GAOl group indicated 15 exercises with a sim-
ilarity level above the threshold, which suggests a quadruple
increase compared to the HNO1 group, as shown in Figure 8.

The distribution of plagiarism cases was more evenly spread
across the exercises in the GAO1 group. In the HNO1 group, a
total of 12 students were notified, out of which 2 students
received a second notification and subsequently failed the
course. On the other hand, in the GAOl group, a larger
number of students, specifically 86 students, were notified
of plagiarism cases, and among them, 22 students failed the
course.

[

7
5 5 5
5
4
3
2 2 2
2 I I I
0
HO7E03

HO8EO1 HO8E02

| Similarity cases over the threshold ~ ® First notification ~ m Second notification (Fail the course)

Fig. 7. Quantitative representation of the plagiarism cases, alongside corre-
sponding notifications of HNO1 group throughout the duration of the course.

30
2626

25
20
1616 1717
12 12
4 . 4 . | 4
2
, ||a ||| °| | 2 |||i

32 34 2 32 \Z
Q N Q Q QS
& & &

Qs

& «\Q <\° & & <\° Q@ & RSN

[,
w«

=
o

>] 3\ g \4
& LS & & S &
R

W Similarity cases over the threshold m First notification m Second notification (Fail the course)

Fig. 8. Quantitative representation of the plagiarism cases, alongside corre-
sponding notifications of GAO1 group throughout the duration of the course.

Finding 3: Students without previous plagiarism control
exposure tend to plagiarize more than those with plagia-
rism control experience. Awareness of plagiarism control
also increases submission caution.

C. Third Experiment - WS22/23

The third experiment, conducted in the WS22/23 semester,
followed a similar approach to the first experiment (WS21/22),
but with some modifications. In this experiment, all students
(HNO2 group) in the InProg course were informed about the
presence of plagiarism control right from the beginning of the
course. The student cohort consisted of 61 individuals, with
11 of them repeating the subject. Among these 11 students, 4
had previously failed the course in the WS21/22 semester by
a plagiarism verdict.

In line with the findings from the previous experiment, the
determination of the similarity threshold in this experiment
was based on the number of lines of code. Additionally,
exercises that tended to have a limited number of possible
solutions were excluded from the plagiarism control analysis.

Furthermore, the number of assignments in this experiment
was reduced to 22, with students receiving 2 weekly assign-

ments throughout the course duration (due to the semester
planning, week 12 had no assignments).

Figure 9 shows a notable decline in the number of similarity
checks, reaching zero starting from week three. In contrast,
to experiment 1 with the HNOI group (Figure 2), there
is no provision for a first notification in this experiment,
and students fail the course directly upon confirmation of a
plagiarism case.

Consequently, assignments (from week 4 onwards) exhibit
no instances of similarity surpassing the established threshold.
This new condition has led to a significant reduction in the
instructor’s effort required for reviewing similarity cases.

N2 32 N2 32 N2 32 N 32 N 32 N 32 N 32 N 32 N 32
6})0 6))0 @“9 @“9 0(;(9 00 0@“’0 0@“9 0«%0 0«%0 QQ&Q 0@;& QO%Q QO%Q ég %Q %0 ’&0
FEIFTFTEFFEFTEEEFEFEEITITIP
Similarity trendline

mmm Similarity cases over the threshold g Definitive notification (Fail the course) eeee

Fig. 9. Quantitative representation of the plagiarism cases, alongside corre-
sponding notifications of HNO2 group throughout the duration of the course.

Upon analyzing Figure 10, it is evident that the distribution
of grades in the practical component of the course (Prog)
exhibits a higher level of performance, as indicated by the
average score of 1.7. This performance surpasses that of the
HNO1 group in the first experiment, as depicted in Figure 11,
where the average score was 2.7. The high number of 5.0
students grades, is among the students who failed the course
because of insufficient grades and also those students who quit
the course.

The implementation of plagiarism control measures, cou-
pled with an early announcement of its enforcement at the
beginning of a course, not only serves to mitigate instances
of plagiarism but also facilitates enhanced comprehension of
programming concepts among students. This improvement in
understanding is subsequently reflected in the grades achieved
by the students.

Upon comparing the performance of the HNO2 group, which
experienced the early announcement and implementation of
plagiarism control, with the HNOI group, it is evident that the
former demonstrate superior performance in the final exam
(In). The HNO2 group achieved an average score of 2.7 (see
Figure 12), whereas the HNO1 group obtained an average score
of 3.7 (see Figure 13).

IS

~

10
8 o .-"
6 I
0 | I] I I
0 3,7 2,7 2,3 2,0 1,7 13 1,0

50 4,7 43 4, 33 3,0

4 I
2 I I '.'l.-... l I
0

5,0 4,7 43 3,7 33 3,0

4,0

27 23 20 17 13 10

Fig. 10. Graphical representation of grade distribution for the practical
programming course (Prog) during the winter semester WS22/23. The average
grade of the course is highlighted in blue.

34

3,7 3,3 2,7 2,3 2,0 1,7 1,3 1,

3,0

IS

50 47 43

0

Fig. 11. Graphical representation of grade distribution for the practical
programming course (Prog) during the winter semester WS21/22. The average
grade of the course is highlighted in blue.

N

50 4,7

4 5,
; m B'm I I n I I I I i
43 40 37 33 30 27 23 20 17 13 10

Fig. 12. Graphical representation of final examination grades (In) for the
winter semester WS22/23. The average grade of the course is highlighted in
blue.

Finding 4: Early disclosure of plagiarism control within
the course significantly fostered student engagement in
autonomous work.

Fig. 13. Graphical representation of final examination grades (In) for the
winter semester WS21/22. The average grade of the course is highlighted in
blue.

This finding was validated by enhanced performance in indi-
vidual exams. The improvement underscores the effectiveness
of plagiarism control awareness in boosting programming skill
acquisition. At this point, it is important to highlight that these
three findings have the potential for broad applicability across
various courses within the domain of software engineering and
programming education.

V. DISCUSSION

The research questions raised in this article have been
addressed through a series of three experiments.

1. Opportunity to commit plagiarism. The findings of
the first experiment shed light on some intriguing patterns of
student behavior. It appears that students exhibit an elevated
propensity to engage in plagiarism when they perceive an
opportunity to do so. This inclination to engage in such
practices is a notable observation and further emphasizes the
need for vigilant plagiarism control measures in academic
environments.

However, when the plagiarism control was announced and
communicated clearly, the dynamics shifted noticeably. There
was a significant reduction in the number of suspected cases
of plagiarism by as much as 72 %. This statistic shows the
deterrent effect that communication about plagiarism control
measures can have on students’ predisposition to plagiarize.

2. No experience with plagiarism control. The results
obtained in the second experiment shed significant light on
the effects of prior exposure to plagiarism control measures on
student behavior. It was found that students in group GAOI,
who had no previous experience with such controls, were more
prone to commit plagiarism across a variety of exercises.

Conversely, the group that had previous experience with
plagiarism control measures (group HNO1) exhibited markedly
lower instances of attempted plagiarism. This distinct contrast
between the two groups underscores the importance of regu-
lar and consistent enforcement of anti-plagiarism policies. It
appears that experience with such measures fosters a culture

of academic integrity among students, leading to decreased
incidences of plagiarism.

However, it is important to note that this experiment does
not facilitate a direct comparison of results with the final
exam. The GAOl group completed the final exam without
supervision, whereas the HNO1 group underwent a supervised
examination. Consequently, it would be unfair to make a
comparison between these groups in this particular context.

3. Initial warning. The third experiment conducted as
part of this study offers compelling evidence about the ef-
fectiveness of the early implementation of plagiarism con-
trol measures. Mirroring the design of the first experiment
but targeting a new cohort of students (group HNO2), this
investigation revealed an overwhelmingly positive impact of
early plagiarism control introduction. Indeed, the instances
of similarity in submitted assignments, which could poten-
tially indicate plagiarism, saw a drastic reduction by 96.5 %.
This statistically significant finding underscores the preventive
power of plagiarism control measures when instituted at the
start of the semester, making students acutely aware of the
scrutiny their work will undergo.

Furthermore, when comparing student performance across
two different academic years (WS21/22 and WS22/23), the
data revealed an encouraging upward trend. The overall aver-
age grades for exercises witnessed an improvement of 24.6 %.

These findings offer a compelling suggestion that the intro-
duction of plagiarism control mechanisms can act as a pow-
erful catalyst in motivating students to work autonomously.
Rather than resorting to shortcuts such as copying others’
work, students, when faced with the awareness of plagiarism
checks, show a tendency to invest their time and energy in
understanding the intricacies of programming, practicing their
skills, and enhancing their grasp of the subject matter.

Importantly, the initial notification of plagiarism control did
not hinder the formation of study groups, as students were
permitted to collaborate during tutor sessions and outside of
class (with restrictions on sharing code or solving homework
together). Nevertheless, we cannot rule out the possibility that
the existence of plagiarism control discourages the formation
of study groups. Beyond addressing the primary research
queries, this manuscript systematically investigates salient
dimensions, encompassing:

Tool Validation. The plagiarism control procedure inher-
ently carries the risk of false positive outcomes (as we got in
the first experiment in this study), which incorrectly flag non-
plagiarized work as a suspect. In response to this issue, sys-
tematic bilateral communication is instituted between students
and instructors. This dialogue enables students to construct
a well-substantiated response that unequivocally demonstrates
the error made by the plagiarism control. Additionally, this
discussion provides instructors with insights into the students’
comprehensive understanding of the subject matter to which
the assignment pertains.

Generalization. The scope of this article is expressly con-
fined to experimental investigations conducted within courses
that comprise the study and implementation of fundamentals

of programming and software engineering. As a consequence,
it is not possible to guarantee the generalizability of the results
obtained from these experiments to other learning topics.
Stress Presence. In WS21/22, one student, who failed
the course due to plagiarism, expressed, ”I independently
completed all the assignments this semester (WS22/23) as |
did not wish to fail again. It was not worth repeating the course
because I had shared code for two exercises in the previous
semester.” This indicates that students understand the severe
consequences of committing plagiarism. Therefore, they tend
to avoid any misconduct practice during the development of
independent assignments. Additionally, new students also are
aware of this, and they also tend to avoid this misconduct.

VI. CONCLUSION AND FUTURE WORK

The primary contribution of this article is its provision of
empirically backed findings that illustrate the propensity of
students to commit to plagiarism when given an opportunity.
The data also reveals an elevated likelihood of plagiarism
among students that have not previously encountered plagia-
rism control initiatives in previous courses.

Additionally, this study suggests that the mere act of inform-
ing students about plagiarism control measures significantly
deters plagiaristic activities. This not only leads to a decrease
in plagiaristic instances but also fosters a positive impact on
students’ overall academic performance as evidenced by their
improved results in both assignments and examinations.

Given the deductions drawn from this investigation, it is
highly recommended that anti-plagiarism mechanisms be in-
stituted and explicitly communicated to the students for every
assignment throughout the course’s duration. Evidence from
the third experiment further corroborates this recommendation
by showcasing how such measures foster independent work
ethics among the students.

Moving forward, the validation of these findings with
substantial statistical evidence is a critical step. Two-sided
significance tests should be conducted once a larger dataset is
obtained over a more extended period. Furthermore, it would
be of high value to evaluate and compare plagiarism behavior
across different academic fields such as computer science and
economics. This comparative analysis would enable the identi-
fication of potential contributing factors to observed variations
in plagiarism behavior. These may include distinct learning
and collaboration strategies or unique academic traditions
associated with each field of study.

However, plagiarism checking should not be used in every
case. When it comes to creativity in project-based courses,
a multitude of rules, guidelines, and instructions can limit
students’ thought processes and thus reduce student learning
[26]. It is important to weigh the use of plagiarism control
and use it where it makes sense.

In the future, we will implement a continuous plagiarism
checker in Artemis that can be activated at the exercise level.
It will inform students about possible plagiarism immediately
after submission - i.e. while the submission is still in progress.

This way, students will be made aware of the possible conse-
quences as early as possible and will have the opportunity to
correct the accusation in a later submission. Since JPlag works
on the abstract syntax tree, it will not be sufficient to apply
simple refactoring such as automatic renaming of variables.
Your solution will have to be inherently different in subsequent
attempts to remove the plagiarism allegation. Interviews will
reveal the psychological impact on student learning outcomes
and how early notification affects their cheating behavior.

REFERENCES

[1] 1. Albluwi, “Plagiarism in programming assessments: a systematic
review,” Transactions on Computing Education, vol. 20, no. 1, pp. 1-28,
2019.

[2] M. Joy and M. Luck, “Plagiarism in programming assignments,” Trans-
actions on education, vol. 42, no. 2, pp. 129-133, 1999.

[3] E. Luquini and N. Omar, “Programming plagiarism as a social phe-
nomenon,” in Global Engineering Education Conference, pp. 895-902,
IEEE, 2011.

[4] R. J. Youmans, “Does the adoption of plagiarism-detection software
in higher education reduce plagiarism?,” Studies in Higher Education,
vol. 36, no. 7, pp. 749-761, 2011.

[5] G. Hill, J. Mason, and A. Dunn, “Contract cheating: an increasing chal-
lenge for global academic community arising from covid-19,” Research
and practice in technology enhanced learning, vol. 16, pp. 1-20, 2021.

[6] T. Foltynek, D. Dlabolovd, A. Anohina-Naumeca, S. Razi, J. Kravjar,
L. Kamzola, J. Guerrero-Dib, O. Celik, and D. Weber-Wulff, “Testing
of support tools for plagiarism detection,” International Journal of
Educational Technology in Higher Education, vol. 17, pp. 1-31, 2020.

[71 B. D. Jenkins, J. M. Golding, A. M. Le Grand, M. M. Levi, and A. M.
Pals, “When opportunity knocks: College students’ cheating amid the
covid-19 pandemic,” Teaching of Psychology, 2022.

[8] N. Tahaei and D. C. Noelle, “Automated plagiarism detection for
computer programming exercises based on patterns of resubmission,” in
Conference on International Computing Education Research, pp. 178—
186, 2018.

[9] J. Pierce and C. Zilles, “Investigating student plagiarism patterns and
correlations to grades,” in Technical Symposium on Computer Science
Education, pp. 471-476, 2017.

[10] J. C. Paiva, J. P. Leal, and A. Figueira, “Automated assessment in
computer science education: A state-of-the-art review,” Transactions on
Computing Education, vol. 22, no. 3, pp. 1-40, 2022.

[11] R. Stallman, “Gnu compiler collection internals,” Free Software Foun-
dation, 2002.

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

J. Hage, P. Rademaker, and N. Van Vugt, “A comparison of plagiarism
detection tools,” Utrecht University. Utrecht, The Netherlands, vol. 28,
no. 1, 2010.

M. Kaya and S. A. Ozel, “Integrating an online compiler and a
plagiarism detection tool into the moodle distance education system for
easy assessment of programming assignments,” Computer Applications
in Engineering Education, vol. 23, no. 3, pp. 363-373, 2015.

D. Pawelczak, “Benefits and drawbacks of source code plagiarism
detection in engineering education,” in Global Engineering Education
Conference, pp. 1048-1056, IEEE, 2018.

D. Pawelczak, “Effects of plagiarism in introductory programming
courses on the learning outcomes,” in 5th International Conference on
Higher Education Advances, pp. 623-631, 2019.

B. Halak and M. El-Hajjar, “Plagiarism detection and prevention
techniques in engineering education,” in /1th European Workshop on
Microelectronics Education, pp. 1-3, IEEE, 2016.

S. Moss, B. White, and J. Lee, “A systematic review into the psycho-
logical causes and correlates of plagiarism,” Ethics & Behavior, vol. 28,
no. 4, pp. 261-283, 2018.

S. Krusche, A. Seitz, J. Borstler, and B. Bruegge, “Interactive learning:
Increasing student participation through shorter exercise cycles,” in
Proceedings of the 19th Australasian Computing Education Conference,
pp. 17-26, 2017.

S. Krusche and A. Seitz, “Increasing the interactivity in software
engineering moocs - A case study,” in 52nd Hawaii International

Conference on System Sciences, HICSS, pp. 1-10, ScholarSpace, 2019.
S. Krusche, N. von Frankenberg, and S. Afifi, “Experiences of a software

engineering course based on interactive learning,” in 15. Workshops
Software Engineering im Unterricht der Hochschulen, pp. 32-40, 2017.
S. Krusche, N. von Frankenberg, L. M. Reimer, and B. Bruegge, “An
interactive learning method to engage students in modeling,” in 42nd In-
ternational Conference on Software Engineering: Software Engineering
Education and Training, pp. 12-22, ACM/IEEE, 2020.

S. Krusche and A. Seitz, “Artemis: An automatic assessment man-
agement system for interactive learning,” in Proceedings of the 49th
technical symposium on computer science education, pp. 284-289,
ACM, 2018.

S. Krusche, “Interactive learning - A Scalable and Adaptive Learning
Approach for Large Courses,” Habilitation, Technical University of
Munich, 2021.

L. Prechelt, G. Malpohl, M. Philippsen, et al., “Finding plagiarisms
among a set of programs with jplag.,” vol. 8, no. 11, p. 1016, 2002.

S. Engels, V. Lakshmanan, and M. Craig, “Plagiarism detection using
feature-based neural networks,” in 38th technical symposium on Com-
puter science education, pp. 34-38, 2007.

S. Krusche, B. Bruegge, I. Camilleri, K. Krinkin, A. Seitz, and
C. Wobker, “Chaordic Learning: A Case Study,” in 39th International
Conference on Software Engineering: Software Engineering Education
and Training, pp. 87-96, IEEE, 2017.

	Introduction
	Related work
	Methodology
	Course Organization
	Plagiarism Detection Process and Tool

	Experiment and Results
	First Experiment - WS21/22
	Second Experiment - SS22
	Third Experiment - WS22/23

	Discussion
	Conclusion and Future Work
	References

